Complex Analysis Qualifying Exam, August 2025

 \mathbb{D} denotes the unit disc B(0,1). For an open set $G \subseteq \mathbb{C}$, H(G) denotes the space of analytic functions on G.

<u>Problem 1:</u> Find the Laurent series expansion of $f(z) = \frac{4z-z^2}{(z^2-4)(z+1)}$ in the region $\{0 < |z+1| < 1\}$.

<u>Problem 2:</u> Let U, V be simply connected open subsets of \mathbb{C} with $U \cap V \neq \emptyset$. Prove that every component of $U \cap V$ is also simply connected.

Problem 3: Show that

$$\int_{-\infty}^{\infty} \frac{dx}{(1+x^2)^{n+1}} = \frac{1 \cdot 3 \cdot 5 \cdot \cdots \cdot (2n-1)}{2 \cdot 4 \cdot 6 \cdot \cdots \cdot 2n} \pi.$$

<u>Problem 4:</u> Let C be a circle in \mathbb{C} , α , $\beta \in \mathbb{C} \setminus C$. Show that there is a Möbius transformation T with T(C) = C and $T(\alpha) = \beta$.

<u>Problem 5:</u> Show that there is a sequence of polynomials $\{p_n(z)\}_{n=1}^{\infty}$ such that

- (i) $p_n(z) \to 0$, uniformly on compact subsets of $\mathbb{C} \setminus \mathbb{R}$,
- (ii) $p_n(z) \to 1$, uniformly on compact subsets of $\mathbb{R} \setminus \{0\}$, and
- (iii) $p_n(0) \to \infty$.

<u>Problem 6:</u> Let $f: \mathbb{C} \to \mathbb{C}$ be an entire function. Assume that for any $a \in \mathbb{R}$, at least one coefficient in the Taylor expansion of f about a is a rational number. Prove that f is a polynomial.

<u>Problem 7:</u> Suppose f and g are analytic in a region containing $\overline{\mathbb{D}}$. Suppose further that f has a simple zero at z=0 and vanishes nowhere else on $\overline{\mathbb{D}}$. Set $f_{\varepsilon}(z)=f(z)+\varepsilon g(z)$. Show that if ε is sufficiently small, then

(i) $f_{\varepsilon}(z)$ has a unique zero in $\overline{\mathbb{D}}$,

and

(ii) if z_{ε} is this zero, then the mapping $\varepsilon \to z_{\varepsilon}$ is continuous.

<u>Problem 8:</u> Let $G \subseteq \mathbb{C}$ be an open set, with an exhaustion $\{K_n\}_{n=1}^{\infty}$ by compact sets satisfying $K_n \subseteq int(K_{n+1})$. Show that for a set $\mathcal{F} \subseteq H(G)$ the following are equivalent:

- (i) \mathcal{F} is normal,
- (ii) for every $\varepsilon > 0$ there is c > 0 such that $\{cf \mid f \in \mathcal{F}\} \subseteq B(0,\varepsilon)$, where $B(0,\varepsilon) = \{f \in H(G) \mid \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{\max_{z \in K_n} |f(z)|}{1+\max_{z \in K_n} |f(z)|} < \varepsilon \}$.

<u>Problem 9:</u> Show that the Hadamard factorization of $f(z)=e^z-1$ equals $e^{z/2}z\Pi_{n=1}^{\infty}(1+\frac{z^2}{4n^2\pi^2})$.

Hint: Consider the function $g(z) = \frac{e^z - 1}{ze^{z/2}}$ (g(0) = 1).

<u>Problem 10:</u> Sketch a proof of why a continuous function on an open set in \mathbb{C} that has the mean value property must be harmonic.