REAL ANALYSIS QUALIFYING EXAM

FALL 2025

The ten problems below are equally weighted. Please start the solution of each problem you attempt on a new sheet. Make sure to properly mention any named theorem that you need in any of your solutions.

In these problems, m, dx, and dy all denote the Lebesgue measure.

- (1) Let μ and ν be finite signed measures. Define $\mu \wedge \nu = \frac{1}{2}(\mu + \nu |\mu \nu|)$. Show that the signed measure $\mu \wedge \nu$ is smaller than μ and ν but larger than any other signed measure that is smaller than μ and ν .
- (2) Let \mathcal{L} be the σ -algebra of all Lebesgue measurable subsets of [0,1], μ be a σ -finite measure on $([0,1],\mathcal{L})$, which is absolutely continuous with respect to the Lebesgue measure. Let $f \in L^1([0,1],\mu)$. Prove that

$$\lim_{n \to \infty} \int_0^1 f(x) \sin nx \, d\mu(x) = 0.$$

(You may use the Riemann-Lebesgue lemma without proof.)

- (3) Let (X, \mathcal{M}, μ) be a complete measure space. A sequence $\{f_n\}$ of measurable real-valued functions on X is said to converge in measure to a measurable real-valued function f provided that for each $\epsilon > 0$, $\lim_{n \to \infty} \mu\{x \in X : |f_n(x) f(x)| > \epsilon\} = 0$. Assume $\mu(X) < \infty$. Show that $\{f_n\} \to f$ in measure if and only if each subsequence of $\{f_n\}$ has a further subsequence that converges pointwise a.e. on X to f.
- (4) Let (X, \mathcal{M}, μ) be a complete measure space. Recall that a sequence $\{f_n\}_n \subset L^2(X, \mu)$ is said converge to $f \in L^2(X, \mu)$ weakly if for any $g \in L^2(X, \mu)$,

$$\lim_{n \to \infty} \int_X f_n(x)g(x)d\mu = \int_X f(x)g(x)d\mu.$$

In this case, prove that there is a subsequence $\{f_{n_k}\}$ such that $\left\{\frac{f_{n_1}+f_{n_2}+\cdots+f_{n_k}}{k}\right\}_k$ converges to f strongly.

- (5) Let A be a subset of \mathbb{R} . Recall that for two subsets A and B of the vector space \mathbb{R} , $A+B:=\{x|x=a+b,\ a\in A,\ b\in B\}$. Suppose that $A\subseteq \mathbb{R}$ is Lebesgue measurable and $A+A\subseteq A$. Prove that if $m(\mathbb{R}\setminus A)<\infty$ then $A=\mathbb{R}$.
- (6) Let $1 and suppose <math>f_n \in L^p([0,1])$, $||f_n||_p \le 1$, and $f_n(x) \to 0$ for almost every x. Show that $f_n \to 0$ weakly in $L^p([0,1])$.

2 FALL 2025

- (7) Let W be any vector space, and suppose that u, v_1, \ldots, v_k are linear functionals on W. Endow W with the weakest topology so that the functionals v_1, \ldots, v_k are continuous. Suppose that u is also continuous in this topology. Prove that u is a linear combination of the v_i .
- (8) Suppose X and Y are Banach spaces, and A_n , n = 1, 2, 3, ... are bounded linear operators from X to Y. Suppose also that $A_n \to A$ in the weak operator topology, i.e., the weakest topology on the space of bounded linear operators $\mathcal{L}(X,Y)$ in which the maps

$$E_{\ell,x}: \mathcal{L}(X,Y) \ni A \mapsto \ell(Ax), \quad x \in X, \ \ell \in Y^*,$$
 are continuous. Show $\sup_n \|A_n\| < \infty$.

- (9) Let X be a Banach space for which X^* is separable. Prove that X is separable.
- (10) Let $V \subset C([0,1])$ denote the linear span of the polynomials $\{x^{3n} : n = 0, 1, 2, ...\}$. For which values of $p, 1 \le p \le \infty$, is V dense in $L^p([0,1])$ (equipped with Lebesgue measure on [0,1]). Prove your answer.