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1 Introduction

In the previous report, we presented the results of some numerical simulations

on a single component ow model with a projection well. Our goal is to

extend this model to the case of multi-component ow with multiple wells.

Some of the wells will be injection wells, where uid is reinjected into the

porous medium. The injection process is expected to increase the pressure

gradient in the medium and hence increase the production.

A model is currently being developed to simulate the situation where un-

wanted portion of the produced uid is put back in to the medium at the

injection well(s). For this, we need to keep track of the wanted component(s)

of the uid. This is done by a transport routine based on a Godunov-type

method (see, e.g. [1], [2]).

In this note, we describe how the two codes, the mixed �nite element rou-

tine discussed in the previous report and this transport routine, are combined

to work together.

2 The model

Recall the Forchheimer ow equations
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We assume the uid has two components. Let n

i

; i = 1; 2; be the mole fraction

of the i-th component, i.e.
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In this test run, we set

n

1

= �~�; n

2

= (1� �)~�; (4)

where 0 < � < 1.

Now, by the conservation law, we get
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where q

i

is a source/sink term for the i-th component. Note that by summing

over i, we get (1).

As was described in the previous report, q is calculated by the ow code

(i.e. the mixed �nite element code solving (1) and (2)) based on the well model.

On the other hand, q

1

, assuming that component 1 is the wanted material, is

calculated by the transport code. q

2

is determined by q � q

1

.

At each time step, the transport code uses �(p), the porosity determined

by the pressure, and u, the velocity of the uid, calculated by the ow code. n

1

is initially given to the transport code as in (4). The transport code calculates

the change of n

1

in time and produces q

1

. In other words, n

1

is kept track of

by the transport code independently once its initial state is given.

3 Test

In this test run, we assume the two components have the same physical prop-

erties, in particular the same velocity. This means that q

1

=q should be equal

to � and n

1

updated by the transport code should remain �~� as time passes.

� was set to 0.75 in this run.

The test was run in a square of side length 5000(ft) with no ow boundary

condition. Other assumptions are as follows.

r

w

= 0:35(ft) (well radius)

p

w

= 1000(psi) (bottom whole pressure)

p

i

= 5000(psi) (initial pressure)

The code was run to t =2000(days). The number of timesteps of the ow

code was 40 from t = 0 to t = 400 and 64 from t = 400 to t = 2000. The

transport code takes smaller timesteps. It takes 35 to 40 timesteps in each of

the 40 timesteps the ow code takes until t = 400 and 21 to 85 in each of the

64 timesteps thereafter. The number of timesteps the transport code takes is
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proportional to juj and as the velocity decreases, it takes less timesteps in a

given time interval.

The plots of �~� and n

1

on the diagonal at t = 2000 is attached. There

is less than 1.5% di�erence between the two results and the source of this

discrepancy is being investigated.
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Figure 1: n

1

and �~� on the diagonal after 2000 days
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