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Abstract. In this paper, we consider the so-called \inexact Uzawa" algorithm for iteratively

solving block saddle point problems. Such saddle point problems arise, for example, in �nite element

and �nite di�erence discretizations of Stokes equations, the equations of elasticity and mixed �nite

element discretization of second order problems. We consider both the linear and nonlinear variants

of the inexact Uzawa algorithm. We show that the linear method always converges as long as the

preconditioners de�ning the algorithm are properly scaled. Bounds for the rate of convergence are

provided in terms of the rate of convergence for the preconditioned Uzawa algorithm and the reduction

factor corresponding to the preconditioner for the upper left hand block. In the nonlinear case, the

inexact Uzawa algorithm is shown to converge provided that the nonlinear process approximating the

inverse of the upper left hand block is of su�cient accuracy. Bounds for the nonlinear iteration are

given in terms of this accuracy parameter and the rate of convergence of the preconditioned Uzawa

algorithm. Applications to the Stokes equations and mixed �nite element discretization of second

order elliptic problems are discussed and �nally, the results of numerical experiments involving the

algorithms are presented.

Key words. inde�nite systems, iterative methods, preconditioners, saddle point problems, Stokes

equations, Uzawa algorithm
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1. Introduction. This paper provides a new analysis for the inexact Uzawa

method applied to the solution of saddle point systems which arise in the discretization

of various systems of partial di�erential equations. Such systems typically are obtained

when \multiplier" or mixed discretization techniques are employed. Examples of these

include the discrete equations which result from approximation of elasticity problems,

Stokes equations and sometimes linearizations of Navier{Stokes equations [4], [14], [15],

[16]. In addition, these systems result from Lagrange multiplier [2], [3], [24] and mixed

formulations of second order elliptic problems [8], [21], [24].

We shall consider iterative solution of an abstract saddle point problem. Let H

1

and H

2

be �nite dimensional Hilbert spaces with inner products which we shall denote

by (�; �). There is no ambiguity even though we use the same notation for the inner

products on both of these spaces since the particular inner product will be identi�ed by

�
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the type of functions appearing. We consider the abstract saddle point problem:

 

A B

T

B 0

! 

X

Y

!

=

 

F

G

!

;(1.1)

where F 2 H

1

and G 2 H

2

are given and X 2 H

1

and Y 2 H

2

are the unknowns. Here

A: H

1

7! H

1

is assumed to be a linear, symmetric, and positive de�nite operator. In

addition, the linear map B

T

: H

2

7! H

1

is the adjoint of B: H

1

7! H

2

. Applying block

elimination to (1.1) yeilds

BA

�1

B

T

Y = BA

�1

F �G:(1.2)

Clearly, BA

�1

B

T

is symmetric and nonnegative and a straightforward computation

shows that

(BA

�1

B

T

V; V ) = sup

U2H

1

(V;BU)

2

(AU;U)

:(1.3)

Consequently, a necessary and su�cient condition for the unique solvability of (1.1) is

that the Ladyzhenskaya{Babu�ska{Brezzi condition hold, i.e.

sup

U2H

1

(V;BU)

2

(AU;U)

� c

0

kV k

2

for all V 2 H

2

;(1.4)

for some positive number c

0

. Here k � k denotes the norm in the space H

2

(or H

1

)

corresponding to the inner product (�; �).

One could iteratively solve (1.2) for Y by conjugate gradient (or preconditioned

conjugate gradient) iteration [12]. Then X is obtained by X = A

�1

(F �B

T

Y ). The

Uzawa method [1] is a particular implementation of a linear iterative method for solving

(1.2). One common problem with the methods just described is that they require

the evaluation of the action of the operator A

�1

in each step of the iteration. For

many applications, this operation is expensive and is also implemented as an iteration.

The inexact Uzawa methods replace the exact inverse in the Uzawa algorithm by an

\incomplete" or \approximate" evaluation of A

�1

. These algorithms are de�ned in

Section 2 and 4. They were also studied in [11].

There are other general iterative techniques for solving saddle point problems of the

form of (1.1), e.g., [5], [26]. In [5], a preconditioner for A is introduced and system (1.1)

is reformulated as a well conditioned symmetric and positive de�nite algebraic system

which may be solved e�ciently by applying the conjugate gradient algorithm. In [26],

the authors consider the convergence properties when the minimal residual algorithm

is applied to a more direct preconditioned reformulation of (1.1). Both of the above

mentioned techniques incorporate preconditioning and avoid the inversion of A.

There is also a variety of application speci�c techniques that depend strongly on

the particular approximation spaces, geometry of the domain etc. In the case of the

mixed approximation of second order problems, those include domain decomposition

techniques [17], a reduction technique involving the use of additional Lagrange multi-

pliers [9], as well as an inde�nite preconditioner [13].
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The inexact Uzawa algorithms are of interest because they are simple and have

minimal computer memory requirements. This could be important in large scale sci-

enti�c applications implemented for todays computing architectures. In addition, an

Uzawa algorithm implemented as a double iteration can be transformed trivially into

an inexact Uzawa algorithm. It is not surprising that the inexact Uzawa methods are

widely used in the engineering community.

In this paper we present new estimates for the inexact Uzawa algorithm both in

the linear and nonlinear case. In the former case, the evaluation of A

�1

is replaced by

the inverse of a linear preconditioner. Theorem 3.1 shows that the resulting algorithm

always converges and gives bounds on the rate of convergence provided that the precon-

ditioner is properly scaled. The inexact Uzawa algorithm in the nonlinear case replaces

the evaluation of A

�1

by some approximate nonlinear process. Theorem 4.1 shows that

the resulting algorithm converges provided that the nonlinear approximation to A

�1

is

suitably accurate. More restrictive results for variants of the inexact Uzawa algorithms

have already appeared in the literature [11], [23].

The outline of the remainder of the paper is as follows. In Section 2, we de�ne

and motivate the linear version of the inexact Uzawa algorithm. Section 3 provides an

analysis of this algorithm. In Section 4, the nonlinear version of the inexact Uzawa

algorithm is de�ned and analyzed. Section 5 discusses a model application to the

Stokes problem while Section 6 considers a model application to a mixed �nite element

discretization of a second order problem boundary value problem. Finally, the results of

numerical experiments involving the inexact Uzawa algorithms are given in Section 7.

A comparison with some other methods is presented as well.

2. The abstract inexact Uzawa algorithm. In this section, we de�ne

the inexact Uzawa method when linear preconditioners are used. This algorithm is

motivated by �rst considering the Uzawa iteration [1] which can be de�ned as follows.

Algorithm 2.1 (Uzawa). For X

0

2 H

1

and Y

0

2 H

2

given, the sequence

f(X

i

; Y

i

)g is de�ned, for i = 1; 2; : : :, by

X

i+1

= X

i

+A

�1

�

F � (AX

i

+B

T

Y

i

)

�

;

Y

i+1

= Y

i

+ � (BX

i+1

�G);

(2.1)

with � a given real number.

Let E

Y

i

= Y � Y

i

be the iteration error generated by the above method. It is easy

to show that

E

Y

i+1

= (I� �BA

�1

B

T

)E

Y

i

:

Let c

1

denote the largest eigenvalue of BA

�1

B

T

. Then, Y

i

converges to Y if � is chosen

such that

� = max(1 � c

0

�; c

1

� � 1) < 1:

In this case, X

i

and Y

i

converge respectively to X and Y with a rate of convergence

bounded by �

i

.
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One problemwith the above method is that it may converge slowly ifBA

�1

B

T

is not

well conditioned. Thus, it is natural to introduce a preconditioner Q

B

: H

2

7! H

2

. We

assume that Q

B

is linear, symmetric and positive de�nite and de�ne the preconditioned

Uzawa algorithm as follows.

Algorithm 2.2 (Preconditioned Uzawa). For X

0

2 H

1

and Y

0

2 H

2

given,

the sequence f(X

i

; Y

i

)g is de�ned, for i = 1; 2; : : :, by

X

i+1

= X

i

+A

�1

�

F � (AX

i

+B

T

Y

i

)

�

;

Y

i+1

= Y

i

+Q

�1

B

(BX

i+1

�G):

(2.2)

For convenience of notation, we have absorbed the parameter � into the precondi-

tioner Q

B

. Accordingly, we assume that Q

B

is scaled so that

(BA

�1

B

T

W;W ) � (Q

B

W;W ) for all W 2 H

2

:(2.3)

Note that since Q

B

is positive de�nite, it follows that

(1 � )(Q

B

W;W ) � (BA

�1

B

T

W;W ) for all W 2 H

2

;(2.4)

holds for some  in the interval [0; 1). In practice, e�ective preconditioners satisfy (2.4)

with  bounded away from one.

If E

Y

i

= Y � Y

i

where Y

i

is generated by (2.2) then

E

Y

i+1

= (I�Q

�1

B

BA

�1

B

T

)E

Y

i

:

Clearly, Q

�1

B

BA

�1

B

T

is symmetric with respect to the inner product

< V;W >= (Q

B

V;W ) for all V;W 2 H

2

:

Let k�k

Q

B

denote the corresponding norm

kWk

Q

B

=< W;W >

1=2

:

Then by (2.3) and (2.4),





E

Y

i







Q

B

� 

i





E

Y

0







Q

B

:

Here and in the sequel, for a symmetric and positive de�nite linear operator L on H

j

,

j = 1; 2, k � k

L

will denote the norm (L�; �)

1=2

.

One problem with the above algorithms is that they require the computation of the

action of the operator A

�1

at each step of the iteration. For many of the applications,

this is an expensive operation which is also done iteratively. This leads to a two level

iteration, an inner iteration for computing the action of A

�1

coupled with the outer

Uzawa iteration (2.1) or (2.2). The inexact Uzawa method replaces the action of A

�1

by a preconditioner. A preconditioner Q

A

is a linear operator Q

A

: H

1

7! H

1

which is

symmetric and positive de�nite. In practice, good preconditioners are relatively cheap
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to invert. For example, the computational cost for one evaluation of Q

�1

A

should be

comparable with the cost of evaluating the action of A (not A

�1

). The inexact Uzawa

algorithm is then given as follows (this algorithm was also studied in [11]).

Algorithm 2.3 (Inexact Uzawa). For X

0

2 H

1

and Y

0

2 H

2

given, the

sequence f(X

i

; Y

i

)g is de�ned, for i = 1; 2; : : :, by

X

i+1

= X

i

+Q

�1

A

�

F �

�

AX

i

+B

T

Y

i

��

;

Y

i+1

= Y

i

+Q

�1

B

(BX

i+1

�G):

(2.5)

One step of the inexact Uzawa algorithm involves an evaluation of each of the op-

erators, A, B, B

T

, Q

�1

A

and Q

�1

B

. In contrast to Krylov space minimization algorithms

such as conjugate residual, there are no discrete inner products involved in the itera-

tion. This makes this algorithm very well suited for implementation on contemporary

massively parallel computer architectures.

3. Analysis of the inexact Uzawa algorithm. In this section, we investigate

the stability and convergence rate of the inexact Uzawa algorithm de�ned above. The

main theorem will show that the inexact Uzawa algorithm will always converge provided

that the preconditioners are properly scaled. By this we mean that (2.3) holds and that

(AW;W ) < (Q

A

W;W )(3.1)

for all W 2 H

1

with W 6= 0. The strict inequality above will be replaced by

(AW;W ) � (Q

A

W;W ) for all W 2 H

1

;(3.2)

in a subsequent corollary.

Bounds for the rates of iterative convergence will be provided in terms two natural

parameters. The �rst parameter has already been de�ned and is the convergence factor

 (see (2.4)) for the preconditioned Uzawa algorithm. The second parameter is the rate

� at which the preconditioned iteration

U

i+1

= U

i

+Q

�1

A

(W �AU

i

)

converges to the solution of

AU = W:

If E

A

i

= U � U

i

then

E

A

i+1

= (I�Q

�1

A

A)E

A

i

:

Clearly Q

�1

A

A is a symmetric operator with respect to the inner product (Q

A

�; �) and

hence the convergence rate � is the largest eigenvalue of I�Q

�1

A

A. Alternatively, � is

the smallest number for which the inequality

(1� �)(Q

A

W;W ) � (AW;W ) for all W 2 H

1

(3.3)
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is satis�ed. It will sometimes be convenient to rewrite (3.3) as

((Q

A

�A)W;W ) � �(Q

A

W;W ) for all W 2 H

1

:(3.4)

The �rst convergence estimate will be provided in terms of a norm on H

1

� H

2

which we shall now de�ne. Consider the bilinear form on H

1

�H

2

given by

" 

U

V

!

;

 

R

S

!#

= ((Q

A

�A)U;R) + (Q

B

V; S):(3.5)

By (3.1), [�; �] generates a norm on H

1

�H

2

which we shall denote by

[jT j] = [T; T ]

1=2

; for all T 2 H

1

�H

2

:

We can now state the main result of this section.

Theorem 1. ssume that (2.3) and (3.1) hold and that  and � satisfy (2.4) and

(3.3) respectively. Let fX;Y g be the solution pair for (1.1), fX

i

; Y

i

g be de�ned by the

inexact Uzawa algorithm and set

e

i

=

 

X �X

i

Y � Y

i

!

:

Then, for i = 1; 2; : : : ;

[je

i

j] � �

i

[je

0

j];(3.6)

where

� =

(1� �) +

q



2

(1� �)

2

+ 4�

2

:(3.7)

Remark 3.1. It is elementary to see that

� � 1�

1

2

(1 � )(1� �):

Thus the inexact Uzawa method converges if (2.3) and (3.1) hold. As expected, the

convergence rate deteriorates as either  or � approach one. In addition, if � tends to

zero (and thus, Q

A

tends to A) then � (de�ned by (3.7)) tends to , the convergence

rate of the preconditioned Uzawa algorithm.

Proof.[Theorem 1] We �rst derive a relationship between the errors e

i+1

and e

i

. The

components of the corresponding errors are denoted by E

X

i

= X�X

i

and E

Y

i

= Y �Y

i

.

From (1.1) and (2.5) we see that the errors satisfy the recurrence

E

X

i+1

=

�

I�Q

�1

A

A

�

E

X

i

�Q

�1

A

B

T

E

Y

i

;

E

Y

i+1

= E

Y

i

+Q

�1

B

BE

X

i+1

:

(3.8)
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Replacing E

X

i+1

in the second equation with its expression from the �rst gives

0

B

@

E

X

i+1

E

Y

i+1

1

C

A

=

0

B

@

(I�Q

�1

A

A) �Q

�1

A

B

T

Q

�1

B

B

�

I�Q

�1

A

A

�

(I�Q

�1

B

BQ

�1

A

B

T

)

1

C

A

0

B

@

E

X

i

E

Y

i

1

C

A

�M

0

B

@

E

X

i

E

Y

i

1

C

A
:

(3.9)

This can be rewritten as

e

i+1

=Me

i

:(3.10)

The proof of the theorem will be complete if we can show that the operator norm

[jMj] = sup

x2H

1

�H

2

[jMxj]

[jxj]

is bounded by � given by (3.7).

The operator M can be written in the form

M =

0

B

@

�I 0

0 I

1

C

A

0

B

@

�(I�Q

�1

A

A) Q

�1

A

B

T

Q

�1

B

B

�

I�Q

�1

A

A

�

(I�Q

�1

B

BQ

�1

A

B

T

)

1

C

A

� EM

1

:

It is straightforward to check that both E and M

1

are symmetric in the [�; �]-inner

product. Let M

�

denote the adjoint of M with respect to [�; �]. Then we have

M

�

= (EM

1

)

�

=M

1

E

and

M

�

M =M

1

E

2

M

1

=M

2

1

:

Consequently,

[jMj]

2

= sup

x2H

1

�H

2

[Mx;Mx]

[x; x]

= sup

x2H

1

�H

2

[M

�

Mx; x]

[x; x]

= sup

x2H

1

�H

2

[M

2

1

x; x]

[x; x]

= sup

�

i

2�(M

1

)

j�

i

j

2

:

Therefore, to estimate the norm ofM, it su�ces to bound the spectrum �(M

1

) ofM

1

.

Since M

1

is symmetric with respect to the [�; �] inner product, its eigenvalues are real.

We shall bound the positive and negative eigenvalues of M

1

separately.
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We �rst provide a bound for the positive eigenvalues ofM

1

. The operator I�Q

�1

A

A

is symmetric with respect to the inner product ((Q

A

�A)�; �). Moreover, it follows from

(3.1) that it is positive de�nite and its positive square root is well de�ned. Let

D =

0

B

@

�

�1=2

(I�Q

�1

A

A)

1=2

0

0 I

1

C

A

:

It follows from (3.1) that D is invertible and from (3.3) that

[jDxj] � [jxj] for all x 2 H

1

�H

2

:(3.11)

Let N = D

�1

M

1

D

�1

. Then

N =

0

B

@

��I �

1=2

L

�

1=2

L

�

(I� L

�

L)

1

C

A

(3.12)

where L = (I�Q

�1

A

A)

�1=2

Q

�1

A

B

T

and L

�

= Q

�1

B

B(I�Q

�1

A

A)

1=2

.

The largest eigenvalue �

m

of M

1

satis�es

�

m

= sup

x2H

1

�H

2

[M

1

x; x]

[x; x]

= sup

x2H

1

�H

2

[NDx;Dx]

[x; x]

= sup

x2H

1

�H

2

[NDx;Dx] [Dx;Dx]

[Dx;Dx] [x; x]

� sup

y2H

1

�H

2

[Ny; y]

[y; y]

:

We used (3.11) for the last inequality above. Since both D andM

1

are symmetric with

respect to [�; �], it follows that N is also. Consequently, �

m

is bounded by the largest

eigenvalue of N .

Let � be a nonnegative eigenvalue of N with corresponding eigenvector f 

1

;  

2

g,

i.e.,

�� 

1

+ �

1=2

L 

2

= � 

1

;

�

1=2

L

�

 

1

+ (I� L

�

L) 

2

= � 

2

:

(3.13)

Eliminating  

1

in the above equations gives

��L

�

L 

2

= (�+ �)(�� 1) 

2

and hence

� � < L

�

L 

2

;  

2

>= (� + �)(�� 1) <  

2

;  

2

> :(3.14)

By (3.3) and (2.4), it follows that

< L

�

L 

2

;  

2

> = (BQ

�1

A

B

T

 

2

;  

2

) � (1� �)(BA

�1

B

T

 

2

;  

2

)

� (1� �)(1� ) <  

2

;  

2

> :

(3.15)
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Since � > 0 and � is nonnegative, we see from the �rst equation in (3.13) that if  

2

= 0

then  

1

= 0. Consequently,  

2

is not equal to zero. Thus, from (3.14) and (3.15), we

get

�

2

� �(1 � �) � � � 0

from which it follows that � � � where � is given by (3.7). This provides the desired

bound for the positive eigenvalues of M

1

.

We next estimate the negative eigenvalues of M

1

. Let � be a negative eigenvalue

of M

1

with corresponding eigenvector ( 

1

;  

2

), i.e.,

�

�

I�Q

�1

A

A

�

 

1

+Q

�1

A

B

T

 

2

= � 

1

;

Q

�1

B

B

�

I�Q

�1

A

A

�

 

1

+

�

I�Q

�1

B

BQ

�1

A

B

T

�

 

2

= � 

2

:

(3.16)

The �rst equation in (3.16) together with (2.4) imply that if  

1

= 0 then  

2

= 0.

Consequently, any eigenvector must have a nonzero component  

1

.

Multiplying the �rst equation of (3.16) by Q

�1

B

B from the left and adding it to the

second one yields

(1� �) 

2

= �Q

�1

B

B 

1

:(3.17)

Substituting (3.17) into the �rst equation of (3.16) and taking an inner product with

Q

A

 

1

gives

�((1� �)((1 + �)Q

A

�A) 

1

;  

1

) + �(Q

�1

B

B 

1

;B 

1

) = 0;

which we rewrite as

�(Q

�1

B

B 

1

;B 

1

) = ((1� �

2

)(Q

A

 

1

;  

1

)� (1 � �)(A 

1

;  

1

):(3.18)

For any V 2 H

1

,

(Q

�1

B

BV;BV ) = sup

W2H

2

(V;B

T

W )

2

(Q

B

W;W )

= sup

W2H

2

(A

1=2

V;A

�1=2

B

T

W )

2

(Q

B

W;W )

� sup

W2H

2

(AV; V )(BA

�1

B

T

W;W )

(Q

B

W;W )

� (AV; V ):

(3.19)

For the last inequality above we used (2.3). Applying (3.19) to the left hand side of

(3.18) and (3.4) on the right hand side of (3.18) gives

�(A 

1

;  

1

) � (� � �

2

)(Q

A

 

1

;  

1

) + �(A 

1

;  

1

)

or

0 � (� � �

2

)(Q

A

 

1

;  

1

):
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This implies that � � �

p

� since  

1

is nonzero. It is elementary to check that

p

� � �

where � is de�ned by (3.7). This completes the proof of the theorem.

The proof of Theorem 3.1 depended on (3.1) so that the inner product [�; �] induced

a norm. The next result shows that the inexact Uzawa method converges even when

only (3.2) is assumed. It also provides an estimate for the error E

X

i

= X�X

i

in a more

natural norm.

Corollary 3.1. Assume that (2.3) and (3.2) hold and that  and � satisfy (2.4)

and (3.3) respectively. Let fX;Y g be the solution pair for (1.1), let fX

i

; Y

i

g be de�ned

by the inexact Uzawa algorithm and set E

X

i

= X �X

i

and E

Y

i

= Y � Y

i

. Then

(Q

B

E

Y

i

; E

Y

i

)

1=2

� �

i

[je

0

j](3.20)

where � is given by (3.7). In addition,

(AE

X

i

; E

X

i

)

1=2

� �

i�1

[je

0

j]:(3.21)

The above inequalities hold for i = 1; 2; : : :.

Proof. Taking the (�; �)-inner product of the �rst equation of (3.8) with Q

A

e

X

i+1

,

applying the Schwarz inequality, and (2.3) gives

(Q

A

E

X

i

; E

X

i

) = ((Q

A

�A)E

X

i�1

; E

X

i

)� (B

T

E

Y

i�1

; E

X

i

)

� ((Q

A

�A)E

X

i�1

; E

X

i�1

)

1=2

((Q

A

�A)E

X

i

; E

X

i

)

1=2

+(BA

�1

B

T

E

Y

i�1

; E

Y

i�1

)

1=2

(AE

X

i

; E

X

i

)

1=2

� (((Q

A

�A)E

X

i�1

; E

X

i�1

) +





E

Y

i�1







2

Q

B

)

1=2

(Q

A

E

X

i

; E

X

i

)

1=2

:

Thus, applying (3.2) gives

(AE

X

i

; E

X

i

) � (Q

A

E

X

i

; E

X

i

) � [je

i�1

j]

2

:(3.22)

Let Q

A;�

= �I+Q

A

for 0 < � < 1� �. Then (3.1) holds for Q

A;�

and by (3.3),

(1 � �

�

)(Q

A;�

W;W ) � (AW;W ) for all W 2 H

1

(3.23)

for �

�

= �+ �. Fix (X

0

; Y

0

) 2 H

1

�H

2

and consider the sequence of iterates fX

�;i

;X

�;i

g

generated by the inexact Uzawa algorithm which replaces Q

A

in the �rst equation of

(2.5) by Q

A;�

. Applying Theorem 3.1 gives that the error

e

�;i

=

 

X �X

�;i

Y �X

�;i

!

satis�es

[je

�;i

j]

�

� �

i

�

[je

�;0

j]

�

(3.24)
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where [j � j]

�

= [�; �]

1=2

�

,

" 

U

V

!

;

 

R

S

!#

�

= ((Q

A;�

�A)U;R) + (Q

B

V; S);

and

�

�

=

(1 � �

�

) +

q



2

(1� �

�

)

2

+ 4�

�

2

:

Clearly,





E

X

�;i







Q

B

� [je

�;i

j]

�

:(3.25)

Inequality (3.20) results from combining (3.24) and (3.25) and taking the limit as �

tends to zero.

In a similar manner we prove (3.21). Taking the limit in (3.24) as � tends to zero

gives

[je

i�1

j] � �

i�1

[je

0

j]:(3.26)

Combining (3.22) and (3.26) gives (3.21) and completes the proof of the corollary.

Remark 3.2. More restrictive convergence results (in these norms) were obtained

by Queck [23]. He proved a convergence result which required stronger conditions with

respect to the scaling of Q

A

and Q

B

. In particular, there are cases which fail to satisfy

the hypothesis of the theory of [23] yet convergence is guaranteed by the corollary

above. In addition, there are many cases when the convergence estimates given above

are substantially better than those of [23].

4. Analysis of the nonlinear inexact Uzawa algorithm. As was pointed

out in Section 2, the Uzawa algorithm is often implemented as a two level iterative

process, an inner iteration for computing A

�1

coupled with the outer Uzawa iteration

(2.1) or (2.2). In this section we investigate the stability and convergence rate of

an abstract inexact Uzawa algorithm where the computation of the action of A

�1

is

replaced with that of an approximation to A

�1

which results from applying a nonlinear

iterative process for inverting A. Two examples of such approximations come from

de�ning the approximate inverse by a preconditioned conjugate gradient iteration or

the operator which results from the application of a multigrid cycling algorithm with a

nonlinear smoother.

The nonlinear approximate inverse is described as a map 	 : H

1

7! H

1

. For � 2 H

1

,

	(�) is an \approximation" to the solution � of

A� = �:(4.1)

We shall assume that our approximation satis�es

k	(�)�A

�1

�k

A

� �k�k

A

�1
for all � 2 H

1

(4.2)
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for some � < 1. As will be seen below, (4.2) is a reasonable assumption which is

satis�ed by the approximate inverse associated with the preconditioned conjugate gra-

dient algorithm. It also can be shown that (4.2) holds under reasonable assumptions

for approximate inverses de�ned by one sweep of a multigrid algorithm with conjugate

gradient smoothing.

Perhaps the most natural example of a nonlinear approximate inverse is de�ned in

terms of the preconditioned conjugate gradient procedure [22]. Let Q

A

be a symmetric

and positive de�nite operator on H

1

and consider applying n steps of the conjugate

gradient algorithm preconditioned byQ

A

to solve the problem (4.1) with a zero starting

iterate. We de�ne 	(�) = �

n

where �

n

is the resulting approximation to �. The

preconditioned conjugate gradient algorithm (PCG) provides the best approximation

(with respect to the norm corresponding to the (A�; �)-inner product) to the solution �

in the space

K

n

= span

n

�;Q

�1

A

A�; : : : ; (Q

�1

A

A)

n�1

�

o

:

It is well known that this implies [6]

k�

n

�A

�1

�k

A

� �k�k

A

�1
for all � 2 H

1

;(4.3)

where

� = �

n

�

1

cosh(n cosh

�1

�)

:

Here � = (�(Q

�1

A

A) + 1)=(�(Q

�1

A

A) � 1) and �(Q

�1

A

A) is the condition number of

Q

�1

A

A. Note that �

n

is a decreasing function of n and �

1

is less than one. Thus, (4.2)

holds in the PCG example. In fact,

�

n

� 2

 

�(Q

�1

A

A)

1=2

� 1

�(Q

�1

A

A)

1=2

+ 1

!

n

:

Since �

n

tends to zero as n tends to in�nity, it is possible to make �

n

as small as we

want by taking a suitably large number PCG iterations.

The variant of the inexact Uzawa algorithm we investigate in this section is de�ned

as follows.

Algorithm 4.1 (Nonlinear Uzawa). For X

0

2 H

1

and Y

0

2 H

2

given, the

sequence f(X

i

; Y

i

)g is de�ned, for i = 1; 2; : : :, by

X

i+1

= X

i

+	

�

F �

�

AX

i

+B

T

Y

i

��

;

Y

i+1

= Y

i

+Q

�1

B

(BX

i+1

�G):

(4.4)

Clearly, (4.4) reduces to the preconditioned Uzawa algorithm (2.2) if 	(f) = A

�1

f for

all f 2 H

1

and (4.4) reduces to the inexact Uzawa algorithm if 	 is a linear operator

Q

�1

A

.
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We will provide bounds for the rate of convergence for the above algorithm in terms

of two parameters, the convergence factor  for the preconditioned Uzawa algorithm

de�ned in (2.4) and the parameter � of (4.2). The main result of this section provides a

su�cient condition on � for convergence of the nonlinear Uzawa algorithm and bounds

for the resulting rate of convergence.

Theorem 2. ssume that (2.3) and (4.2) hold and that  satis�es (2.4). Let fX;Y g

be the solution pair for (1.1) and fX

i

; Y

i

g be de�ned by the nonlinear Uzawa algorithm

(4.4). Then X

i

and Y

i

converge to X and Y respectively if

� <

1� 

3� 

:(4.5)

In this case the following inequalities hold:

�

1 + �

(AE

X

i

; E

X

i

) + (Q

B

E

Y

i

; E

Y

i

)

� �

2i

 

�

1 + �

(AE

X

0

; E

X

0

) + (Q

B

E

Y

0

; E

Y

0

)

!

(4.6)

and

(AE

X

i

; E

X

i

) � (1 + �)(1 + 2�)�

2i�2

 

�

1 + �

(AE

X

0

; E

X

0

) + (Q

B

E

Y

0

; E

Y

0

)

!

(4.7)

where

� =

2� +  +

q

(2� + )

2

+ 4�(1� )

2

:(4.8)

Remark 4.1. The result of Theorem 2 is somewhat weaker than the results obtained

in Section 3 for the linear case due to the threshold condition (4.5) on �. In the case of

PCG, it is possible to take su�ciently many iterations n so that (4.5) holds for any �xed

 and �(Q

�1

A

A). In applications involving partial di�erential equations,  and �(Q

�1

A

A)

may depend on the discretization parameter h. If, however, �(Q

�1

A

A) can be bounded

and  can be bounded away from one independently of h then by Theorem 2, a �xed

number (independent of h) of iterations of PCG are su�cient to guarantee convergence

of the nonlinear Uzawa algorithm.

Remark 4.2. An analysis of (4.4) is given in [10] and [11] in the case of applications

to Stokes problems. The su�cient condition for convergence derived there is that the

iterate X

i+1

satis�es

kF �B

T

Y

i

�AX

i+1

k � �kBX

i

�Gk

Q

�1

A

;(4.9)

where � is independent of the mesh size. The above norms are not natural for procedures

such as PCG and multigrid with nonlinear smoothing. PCG does not give rise to
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monotone error behavior in the norm k�k even though convergence is guaranteed by the

canonical bound (4.3),

kF �B

T

Y

i

�AX

i+1

k

A

�1
� �kF �B

T

Y

i

�AX

i

k

A

�1

and equivalence of norms in �nite dimensional spaces. Such norm equivalences depend

on the mesh parameter h. A second problem with the requirement (4.9) is that the

norm on the right hand side converges to zero as X

i

converges to the solution X. This

means that even thought � is �xed independent of h, considerably more iterations of

PCG may be required to satisfy (4.9) as the approximate solution converges.

Proof.[Theorem 2] We start by deriving norm inequalities involving the errors E

X

i

and E

Y

i

. As in (3.8),

E

X

i+1

= E

X

i

�	

�

AE

X

i

+B

T

E

Y

i

�

;

E

Y

i+1

= E

Y

i

+Q

�1

B

BE

X

i+1

:

(4.10)

The �rst equation above can be rewritten

E

X

i+1

= (A

�1

�	)

�

AE

X

i

+B

T

E

Y

i

�

�A

�1

B

T

E

Y

i

:(4.11)

It follows from the triangle inequality, (4.2) and (2.3) that





E

X

i+1







A

� �(





E

X

i







A

+ (BA

�1

B

T

E

Y

i

; E

Y

i

)

1=2

)

+(BA

�1

B

T

E

Y

i

; E

Y

i

)

1=2

� �





E

X

i







A

+ (1 + �)





E

Y

i







Q

B

:

(4.12)

Using (4.11) in the second equation of (4.10), we obtain

E

Y

i+1

=

�

I�Q

�1

B

BA

�1

B

T

�

E

Y

i

+Q

�1

B

B

�

A

�1

�	

� �

AE

X

i

+B

T

E

Y

i

�

:

Since Q

�1

B

BA

�1

B

T

is a symmetric operator in the < �; � >-inner product, it follows

from (2.4) that







�

I�Q

�1

B

BA

�1

B

T

�

E

Y

i







Q

B

� 





E

Y

i







Q

B

:

Thus, by the triangle inequality, (2.3), (3.19) and (4.2),





E

Y

i+1







Q

B

� 





E

Y

i







Q

B

+





Q

�1

B

B

�

A

�1

�	

� �

AE

X

i

+B

T

E

Y

i

�






Q

B

� 





E

Y

i







Q

B

+





(A

�1

�	)

�

AE

X

i

+B

T

E

Y

i

�







A

� 





E

Y

i







Q

B

+ �

�




E

X

i







A

+ (BA

�1

B

T

E

Y

i

; E

Y

i

)

1=2

�

� ( + �)





E

Y

i







Q

B

+ �





E

X

i







A

:

(4.13)
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Let us adopt the notation

 

x

1

y

1

!

�

 

x

2

y

2

!

for vectors of nonnegative numbers x

1

; x

2

; y

1

; y

2

if x

1

� x

2

and y

1

� y

2

. Repeated

application of (4.12) and (4.13) gives

0

@






E

X

i







A





E

Y

i







Q

B

1

A

�M

i

0

@






E

X

0







A





E

Y

0







Q

B

1

A

(4.14)

where M is given by

M =

 

� 1 + �

�  + �

!

:

We consider two dimensional Euclidean space with the inner product

$ 

x

1

y

1

!

;

 

x

2

y

2

!%

=

�

1 + �

x

1

x

2

+ y

1

y

2

:

A trivial computation shows that M is symmetric with respect to the b�; �c-inner prod-

uct. It follows from (4.14) that

�

1 + �

(AE

X

i

; E

X

i

) + (Q

B

E

Y

i

; E

Y

i

) =

6

6

6

4

0

@





E

X

i







A





E

Y

i







Q

B

1

A

;

0

@





E

X

i







A





E

Y

i







Q

B

1

A

7

7

7

5

�

6

6

6

4

M

i

0

@





E

X

0







A





E

Y

0







Q

B

1

A

;M

i

0

@





E

X

0







A





E

Y

0







Q

B

1

A

7

7

7

5

� �

2i

 

�

1 + �

(AE

X

0

; E

X

0

) + (Q

B

E

Y

0

; E

Y

0

)

!

where � is the norm of the matrix M with respect to the b�; �c-inner product. Since

M is symmetric in this inner product, its norm is bounded by its spectral radius. The

eigenvalues of M are the roots of

�

2

� (2� + )� � �(1� ) = 0:

It is elementary to see that the spectral radius of M is equal to its positive eigenvalue

which is given by (4.8).

Examining the expression for � given by (4.8) we see that � is an increasing function

of � for any �xed  2 [0; 1]. Moreover, � = 1 for

� =

1� 

3� 

:

This completes the proof of the (4.6).
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To prove (4.7) we apply the arithmetic-geometric mean inequality to (4.12) and get

for any positive �,





E

X

i







2

A

� (1 + �)�

2





E

X

i�1







2

A

+ (1 + �

�1

)(1 + �)

2





E

Y

i�1







2

Q

B

:

Inequality (4.7) follows taking � = 1+1=� and applying (4.6). This completes the proof

of the theorem.

5. Application to a Stokes problem . In this section we consider an ap-

plication of the theory developed in the previous sections to solving inde�nite systems

of linear equations arising from �nite element approximations of the Stokes equations.

For simplicity we restrict our discussion to the following model problem: Find u and p

such that

��u�rp = g in 
;

r � u = f in 
;

u = 0 on @
;

Z




p(x) dx = 0;

(5.1)

where 
 is the unit cube in R

d

, d=2, 3, � is the componentwise Laplace operator, u is

a vector valued function representing the velocity, and the pressure p is a scalar func-

tion. Generalizations to domains with more complex geometry and variable coe�cients

equations are possible.

Let L

2

0

(
) be the set of functions in L

2

(
) with zero mean value on 
 and H

1

(
)

denote the Sobolev space of order one on 
 (cf., [18], [20]). The space H

1

0

(
) consists

of those functions in 
 whose traces vanish on @
, the boundary of 
. Also, (H

1

0

(
))

d

will denote the product space consisting of vector valued functions with each vector

component in H

1

0

(
).

In order to derive the weak formulation of (5.1) we multiply the �rst two equations

of (5.1) by functions in (H

1

0

(
))

d

and L

2

0

(
) respectively and integrate over 
 to get

D(u;v) + (p;r � v) = (g;v) for all v 2 (H

1

0

(
))

d

;

(r � u; q) = (f; q) for all q 2 L

2

0

(
):

(5.2)

Here (�; �) is the L

2

(
) inner product and D(�; �) denotes the vector Dirichlet form for

vector functions on 
 de�ned by

D(v;w) =

d

X

i=1

Z




rv

i

� rw

i

dx:

We next identify approximation subspaces of (H

1

0

(
))

d

and L

2

0

(
). In order to

avoid unnecessary complexity of the presentation only a two dimensional example will

be considered. The discussion here is very closely related to the examples given in [4]

and [5] where additional comments and other applications can be found. We partition 
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1

�1

�1

1

Fig. 5.1. The square mesh used for

~

H

2

; the support

(shaded) and values for a typical �

ij

.

into 2n�2n square shaped elements, where n is a positive integer and de�ne h = 1=2n.

Let x

i

= ih and y

j

= jh for i; j = 1; : : : ; 2n. Each of the square elements is

further partitioned into two triangles by connecting the lower right corner to the upper

left corner. Let S

h

be the space of functions that vanish on @
 and are continuous and

piecewise linear with respect to the triangulation thus de�ned. We set H

1

� S

h

�S

h

�

(H

1

0

(
))

2

. The choice of H

2

is motivated by the observation [19] that the space

~

H

2

of

functions that are piecewise constant with respect to the square elements together with

H

1

as de�ned above form an unstable pair of approximation spaces. This means that

the functions from H

1

�

~

H

2

do not satisfy (1.4) with a constant c

0

independent of the

discretization parameter h. To overcome this problem, one may consider a smaller space

de�ned as follows. Let �

kl

for k; l = 1; : : : ; 2n be the function that is one on the square

element [x

k�1

; x

k

]�[y

l�1

; y

l

] and vanishes elsewhere. De�ne �

ij

2

~

H

2

for i; j = 1; : : : ; n

by

�

ij

= �

2i�1;2j�1

� �

2i;2j�1

� �

2i�1;2j

+ �

2i;2j

(see Figure 5.1). The space H

2

is then de�ned by

H

2

�

n

W 2

~

H

2

: (W;�

ij

) = 0 for i; j = 1; : : : ; n

o

:

The pair H

1

�H

2

now satis�es (1.4) with a constant c

0

independent of h [19]. Moreover,

the exclusion of the functions �

i;j

does not change the order of approximation for the

space since the H

2

still contains the piecewise constant functions of size 2h.

The approximation to the solution of (5.2) is de�ned as the unique pair (X;Y ) 2

H

1

�H

2

satisfying

D(X;V ) + (Y;r � V ) = (g; V ) for all V 2 H

1

;

(r �X;W ) = (f;W ) for all W 2 H

2

:

(5.3)

Obviously, (5.3) is a system of linear equations whose unique solvability is guaranteed

by (1.4).
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The system (5.3) can be reformulated in terms of operators as follows. Let

A : H

1

7! H

1

; (AU; V ) = D(U; V ); for all U; V 2 H

1

;

B : H

1

7! H

2

; (BU;W ) = (r � U;W ); for all U 2 H

1

; W 2 H

2

;

B

T

: H

2

7! H

1

; (B

T

W;V ) = (W;r � V ); for all V 2 H

1

; W 2 H

2

:

It follows that the solution (X;Y ) of (5.3) satis�es (1.1) with F equal to the L

2

(
)

projection of f into H

2

and G equal to the (L

2

(
))

2

projection of g into H

1

.

It is straightforward to check that (2.3) holds forA, B, and B

T

as above. Moreover,

it follows from (1.4) that (2.4) holds with  independent of the mesh size h.

Remark 5.1. It appears from the de�nition of the above operators that one has

to invert Gram matrices in order to evaluate the action of A, B

T

and B on vectors

from the corresponding spaces. In practice, the H

1

Gram matrix inversion is avoided

by suitable de�nition of the preconditioner Q

A

. For the purpose of computation, the

evaluation of Q

�1

A

f for f 2 H

1

is de�ned as a process which acts on the inner product

data (f;  

i

) where f 

i

g is the basis for H

1

. Moreover, from the de�nition of the Uzawa-

like algorithms in the previous sections, it is clear that every occurrence of A or B

T

is

followed by an evaluation of Q

�1

A

. Thus the inversion of the Gram matrix is avoided

since the data for the computation of Q

�1

A

, ((B

T

Q; 

i

) and (AV;  

i

)), can be computed

by applying simple sparse matrices. In the case of this special choice of H

2

, it is possible

to compute the operator B in an economical way (see Remark 5 of [5]) and we can take

Q

B

to be the identity. For more general spaces H

2

, the inversion of Gram matrices can

be avoided by introducing a preconditioner Q

B

whose inverse is implemented acting on

inner product data as in the H

1

case above.

We still need to provide preconditioners for A. However, A consists of two copies

of the operator which results from a standard �nite element discretization of Dirichlet's

problem. There has been an intensive e�ort focused on the development and analysis

of preconditioners for such problems. In our examples Section 7, we will use a precon-

ditioning operator which results from a V-cycle variational multigrid algorithm. Such

a preconditioner is known to be scaled so that both (3.2) holds and (2.4) holds with 

bounded away from one independently of the mesh parameter h.

6. Applications to mixed �nite element discretizations of elliptic prob-

lems. In this section we discuss applications of the algorithms analyzed in Section 3

to solving inde�nite systems arising from mixed �nite element discretizations of second

order partial di�erential equations. For this application, it will be relatively easy to

construct preconditioners Q

A

while the development of a suitable operator Q

B

is more

di�cult.

The basic problem we consider here is

�r �Krp = f in 
;

p = 0 on @
;

(6.1)
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where K = fk

i;j

g

d

i;j=1

is a symmetric positive de�nite matrix whose entries are bounded

functions of the spatial variable, 
 is a bounded domain with polygonal or polyhedral

boundary in d{dimensional Euclidean space for d = 2 or 3. This is a classical model

problem in continuum mechanics or uid ow in porous media.

Introducing a new variable u, (6.1) can be written as a �rst order system as follows:

u = Krp in 
;

r � u = �f in 
;

p = 0 on @
:

(6.2)

In the typical applications K is the elasticity/permeability tensor, u usually represents

the stress/velocity, p is the displacement/pressure. The mixed method naturally takes

into account constraints that appear in the variational formulation of a given di�erential

problem, e.g., r � u = f , and provides direct approximations to the two variables of

interest: u and p. Often these features are more attractive then those corresponding to

the standard �nite element method.

Then the weak formulation of (6.2) is

(K

�1

u; V ) + (p;r � V ) = 0; for all V 2 H

div

(
);

(r � u;W ) = �(f;W ); for all W 2 L

2

(
):

(6.3)

The space H

div

(
) is the set of vector functions in (L

2

(
))

d

whose divergences are

also in L

2

(
). Here, as in the previous section, (�; �) denotes the L

2

(
) or (L

2

(
))

2

inner product. The mixed discretizations involve the introduction of two approximation

subspaces, H

1

� H

div

(
) for the velocities and H

2

� L

2

(
) for the pressures. To

illustrate this type of application, we will only discuss the simplest mixed �nite element

discretization of (6.1), namely the lowest order Raviart-Thomas spaces [24]. We assume

some familiarity with the mixed approximation approach and only give limited detail.

Detailed development can be found in [8], [21], and [24].

Let T

h

be a partitioning of 
 into simplices of quasi-uniform size h. The space H

1

is de�ned to be the vector valued functions which are linear on the simplices and have

a continuous constant normal component on each of the face of the mesh. The space

H

2

consists of the set functions which are constant (discontinuous across the faces) on

each of the simplices. The mixed �nite element approximation is de�ned to be the pair

(X;Y ) satisfying

(K

�1

X;V ) + (Y;r � V ) = 0; for all V 2 H

1

;

(r �X;W ) = �(f;W ); for all W 2 H

2

:

The operators B and B

T

are de�ned as in the previous section. However, for this

application, the operator A : H

1

7! H

1

is de�ned by

(AU; V ) = (K

�1

U; V ) for all U; V 2 H

2

:
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In terms of these operators, we get a discrete system of linear equations of type (1.1)

with F = 0 and G = f

h

, where f

h

is the L

2

(
) orthogonal projection of f into H

2

.

The operator A is well conditioned and hence a simple multiple of the identity

provides an e�ective Q

A

. On the other hand, the operator BA

�1

B

T

is not uniformly

well conditioned. In fact, it exhibits a condition number growth like h

�2

and should

be preconditioned in order to get an e�cient algorithm of type (2.2) or (2.5). It is well

known that BA

�1

B

T

behaves like a discretization of a second order operator. In some

applications, it can be preconditioned by cell centered techniques [25], multigrid [7], or

incomplete Choleski factorization of BB

T

[26].

7. Numerical examples. In this section we present the results from numerical

experiments that illustrate the theory developed in the earlier sections. We also report

similar results obtained from applying the conjugate gradient algorithm for saddle point

problems introduced in [5].

Even though the most e�ective algorithms result from the use of good precondi-

tioners, we shall initially present results using one of the worst possible preconditioners,

the identity operator. This is important since in some engineering applications, good

preconditioners may not be readily available. We also report results when e�ective

preconditioners are employed.

The test problem was (5.1) with 
 � (0; 1)

2

, g = 0 and f = 0. Clearly, its exact

solution was zero for both pressure and velocity. We started the iterations with an

arbitrary but �xed initial iterate. All of the iterative methods considered are functions

of the error and thus, iterating for a problem with a zero solution and a nonzero starting

guess is equivalent to solving a related problem with a nonzero solution and a zero initial

guess. We used the discretization described in Section 5.

Our objectives in conducting the numerical experiments were to establish experi-

mentally the conclusions from the theoretical analysis of the algorithms tested and to

assess their e�ectiveness in terms of error reduction after �xed number of iterations.

The same nonzero initial iterate was used for all algorithms. As discussed in Section 5,

we used Q

B

� I. The experimental results are organized in four tables.

In Table 7.1 we give results for three algorithms using Q

A

equal to an appropriate

multiple of the identity. The algorithms are described as follows.

UID : The algorithm (2.5) with Q

A

=

�

�

max

I and Q

B

= I. Here

�

�

max

is an upper

bound for the largest eigenvalue of A.

USTD : The algorithm (4.4) with Q

B

= I and 	 de�ned by one step of the

steepest descent method (SDM) applied to approximate the action of A

�1

.

BPID : The preconditioned conjugate gradient algorithm for saddle point prob-

lems given in [5] with Q

A

=

�

�

min

I, where

�

�

min

is a lower bound for the smallest

eigenvalue of A and Q

B

= I. Notice that the scaling required by Theorem 1 of

[5] is in the opposite direction of (3.1).

The reported error values in Table 7.1 represent the relative error norm after i iterations
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computed by

Error

i

=

0

B

@

D(E

X

i

; E

X

i

) +





E

Y

i







2

D(E

X

0

; E

X

0

) + kE

Y

0

k

2

1

C

A

1=2

:(7.1)

Clearly, this is not the norm which appears in the theory and one cannot expect the

errors to behave in a monotone way. This explains the increase in the reported error

for UID when h = 1=32 and h = 1=64. That the USTD method appears convergent

for h � 32 is surprising since (4.5) is not satis�ed for these applications. The BPID

method converges considerably faster in these examples since the saddle point method

of [5] is known to give a rate of convergence which exhibits square root acceleration in

cases when poor preconditioners are employed. As expected, all methods deteriorate

due to lack of preconditioning as the mesh size is decreased.

Table 7.1

Errors in UID, USTD and BPID by (7.1)

h 200 iterations

UID USTD

y

BPID

1/8 4.2�10

�3

5.1�10

�6 z

6.5�10

�12

1/16 0.4 5.8�10

�2

2.9�10

�10

1/32 1.5 0.2 1.1�10

�4

1/64 2.7 4.5 2.0�10

�2

y one SDM step per inexact Uzawa iteration.

z for 109 BPID iterations.

In order to establish experimentally the convergence of UID and USTD, we ran

these two algorithms for 2000 iterations. The results are shown in Table 7.2. Even

though improved convergence is observed in all cases when compared to Table 7.1, the

UID algorithm still appears unstable for h = 1=64. We ran UID for 10000 iterations

and observed an error of :0048. Although convergent, the inexact Uzawa method with

such a poor preconditioner converges too slowly to be of practical use.

The above results may at �rst appear to contradict the validity of the theory of

Section 4. The reason that the methods appear divergent at a relatively low numbers

of iterations is that the theorems guarantee monotonicity of the errors in norms which

are di�erent from those used in (7.1). Our next experiment was designed to illustrate

the monotone convergence of UID and BPID predicted by Theorem 1 and Theorem 1

in [5]. Accordingly, we measured the errors in the norms appearing in the theorems. In

the case of UID, we use

Error

i

=

0

B

@

�

�

max





E

X

i







2

�D(E

X

i

; E

X

i

) +





E

Y

i







2

�

�

max

kE

X

0

k

2

�D(E

X

0

; E

X

0

) + kE

Y

0

k

2

1

C

A

1=2

:(7.2)
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Table 7.2

Errors in UID and USTD by (7.1)

h 2000 iterations

UID USTD

y

1/8 0 2.0�10

�23

1/16 3.7�10

�6

3.9�10

�16

1/32 2.5�10

�2

2.1�10

�4

1/64 1.5 8.7�10

�2

y one SDM step per inex-

act Uzawa iteration.

In the case of BPID, we used

Error

i

=

0

B

@

D(E

X

i

; E

X

i

)�

�

�

min





E

X

i







2

+





E

Y

i







2

D(E

X

0

; E

X

0

)�

�

�

min

kE

X

0

k

2

+ kE

Y

0

k

2

1

C

A

1=2

:(7.3)

The convergence results in these norms are reported in Table 7.3. Note that all of

the reported errors are less than one. We made additional runs at lower number of

iterations. All runs reected the monotone error behavior in these norms as guaranteed

by the theory.

Table 7.3

Errors in UID and BPID by (7.1) and (7.3)

h 200 iterations

UID BPID

1/8 4.29�10

�3 z

2.1�10

�12

1/16 0.18 3.1�10

�10

1/32 0.52 1.1�10

�4

1/64 0.77 2.0�10

�2

z for 109 BPID iterations.

The last experiment given in this section is intended to illustrate the performance

of the algorithms when e�ective preconditioners are used. In this case, we de�ne Q

�1

A

to

be the operator which corresponds to one V{cycle sweep of variational multigrid with

point Gauss-Seidel smoothing. The order of points in the Gauss-Seidel iteration was

reversed in pre{ and post{smoothing. Note that Q

A

automatically satis�es (3.2) and

satis�es (3.3) with � independent of h. We consider the following two algorithms:
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UMG : The algorithm (2.5) with Q

B

= I and Q

�1

A

being the action of multigrid.

BPMG : The algorithm from [5] with the A block preconditioned by :5Q

�1

A

and

Q

B

= I.

Table 7.4 contains the error reductions for this example. The e�ect of applying a better

preconditoner Q

A

is clearly seen when we compare the results from UID (Tables 7.1

and 7.2) with those from UMG. Notice that the UMG data in Table 7.4 show little,

if any, deterioration as the mesh size becomes small.

Table 7.4

Errors in UMG and BPMG by (7.1)

h 40 iterations

UMG

y

BPMG

y

1/8 1.6�10

�5

1.0�10

�11

1/16 9.4�10

�7

6.9�10

�9

1/32 1.6�10

�6

1.3�10

�8

1/64 2.2�10

�6

4.5�10

�9

y one multigrid V{cycle per

iteration.

In all of the reported results, the reformulation method of [5] shows faster con-

vergence. Nevertheless, the inexact Uzawa methods are still of interest since they are

robust, simple to implement, have minimal memory requirements and avoid the ne-

cessity of computing inner products. These properties may make the inexact Uzawa

methods attractive in certain applications.
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