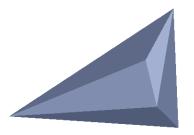
Visualizing and Understanding Tropical Geometry

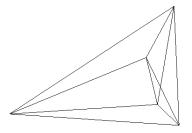
Isabella Robinson

July 2024

Geomview

- Computer Navigation
- XCode, XQuartz





Definitions

Definition

Real n-variate t-nomial:

$$f(x) = \sum_{i=1}^{t} c_i x^{a_i}, \quad c_i \neq 0, \ a_i \in \mathbb{Z}^n$$

Support: $Supp(f) = \{a_i \mid c_i \neq 0\}$

Definition

Positive Zero Set:
$$Z_+(f) = \{x \in \mathbb{R}^n_+ \mid f(x) = 0\}$$

Definitions

Definition

Circuit Case:

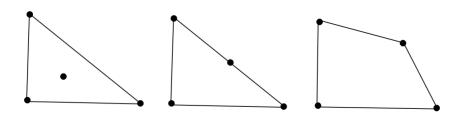
 $\{a_1,\ldots,a_{n+2}\}\subset\mathbb{R}^n$ is a circuit iff the rank of the matrix

$$\begin{bmatrix} 1 & \cdots & 1 \\ a_1 & \cdots & a_{n+2} \end{bmatrix}$$

is n+1.

Definition

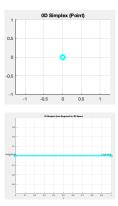
Newton Polytope: convex hull of the exponent vectors of the monomial terms of the polynomial

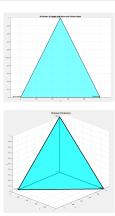


Simplex

Definition

Simplex: Convex hull of k+1 affinely independent points in \mathbb{R}^k , where no subset of the points lie on the same hyperplane.





Plotting Surfaces

$$f(x, y, z) = 1y^{59}z^{47} + 3z^{79} + y^{181} + 1x^{233} - 10x^{81}y^{81}z^{81} = 0$$

- Small errors in x,y,z can lead to large errors
- Visual plots might not reflect the true surface
- For each (x,y), solve f(x,y,z) = 0 for z

Topological Information

Topological Invrients:

- Connected Components
- Holes
- Robustness

Why Topological Information about Zero Sets is Useful

Robotics:

- Path planning
- Zero set describes constraints and obstacles in the space

Computational Biology:

- Zero sets can represent reaction pathways in biochemical processes
- Shape and connectivity of zero sets can provide information into the stability and arrangement of molecular structures

$\mathsf{Trop}_+(\mathsf{f})$

Definition

Trop₊(**f**): The set of $u^* \in \mathbb{R}^n : \max |c_i e^{a_i u}|$ is attained at some pair of indices j and j' with $c_j c_j' < 0$

$$f(x,y) = -1 + x + y$$

$$Trop(f) = max\{-1, logx, logy\}$$

$$c_1 = -1 \ c_2 = 1 \ c_1c_2 < 0$$

$$c_1 = -1 \ c_3 = 1 \ c_1c_3 < 0$$

$$c_2 = -1 \ c_3 = 1 \ c_2c_3 > 0$$

Intersection:
$$-1 = \log x$$

 $-1 = \log y$
 $u^* = (.1, .1)$

Rays: Extend in max directions

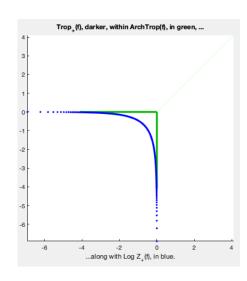
$$a_2 - a_1 \& a_3 - a_2$$

(1,0) & (0,1)

Approximating $LogZ_{+}(f)$

$$f(x,y) = -1 + x + y$$

- Trop₊(f) can be used to approximate LogZ₊(f)
- Trop₊(f) and LogZ₊(f) are ambiently isotopic



Distance at most log(2)

Definition

Amoeba: The amoeba of a complex polynomial $f \in \mathbb{C}[x_1^{\pm},...,x_n^{\pm}]$ is the image of the zero set of f under the logarithmic map.

Theorem

For any $f \in \mathbb{C}[x_1^{\pm}, \dots, x_n^{\pm}]$ with exactly $t \geq 2$ monomial terms and Newt(f) of dimension k, we have:

- (a) $Amoeba(f) \subseteq ArchTrop(f)_{\log(t-1)}$
- (b) Let $\varphi(x) := 1 + x_1 + \cdots + x_{t-1}$:
 - The amoeba Amoeba(φ) contains a point at distance $\log(t-1)$ from $ArchTrop(\varphi)$.
 - ArchTrop(φ) contains points approaching a distance $\log(t-k)$ from Amoeba(φ).

Definition

b-vector: If Supp(f) forms a non-degenerate circuit, b-vector is defined by the coefficients b_i : $\sum_{i=1}^{n+2} b_i a_i = 0$

Definition

Sign-compatible: $sign(b_1c_1) = ... = sign(b_{n+2}c_{n+2})$

Lemma

If Supp(f) can form a non-degenerate circuit, but f is sign incompatible, then $Z_+(f)=\emptyset$ if and only if all the coefficients of f have the same sign.

Isotopy and Distance Bounds

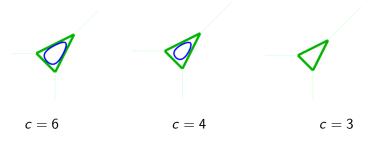
Theorem

Let $B := \sum_{i=1}^{n+2} b_i \log |b_i|$. Then $Z_+(f)$ and $Trop_+(f)$ are ambiently isotopic in \mathbb{R}^n , and every point of $LogZ_+(f)$ is within distance log(n+1) of some point $Trop_+(f)$ if the conditions are met:

- 1 f is sign incompatible
- 2 f is sign compatible and
 - (a) $sign(B) \sum_{i=1}^{n+2} b_i \log |c_i| > 0$, or
 - (b) $sign(B) \sum_{i=1}^{n+2} b_i \log |c_i| < -|B|$.

$$LogZ_{+}(f)$$
 vs. $Trop_{+}(f)$

- Do not necessarily have the same isotopy type
- Consider $f(x, y) = 1 cxy + x^3 + y^3$
- For most values of c, the isotopy types align



 $\mathsf{Trop}_+(\mathsf{f})$ when $c \leq 3$ fails to capture the correct isotopy type

Newton Polytope: convex hull of the exponents of the terms of the polynomial

Toric Variety: Type of Algebraic Variety associated with torus actions

- Let $T = (\mathbb{C}^*)^n$ be an algebraic torus.
- A toric variety X has an algebraic torus T acting on it in a way that aligns with its geometric and algebraic structure

Moment Map: Maps points in the toric variety to a polytope

Constructing the Moment Map

- Moment map translates contributions of each monomial to a geometric representation
- Points generated are plottedto visualize the tropical variety

L1 Moment Map:

Sums of the absolute value of the monomials: $\lambda_i = \frac{a_i x^i}{\sum_j |a_j x^j|}$

L2 Moment Map:

Sums of the squares of the monomials: $\lambda_i = \frac{(a_i x^i)^2}{\sum_j (a_j x^j)^2}$

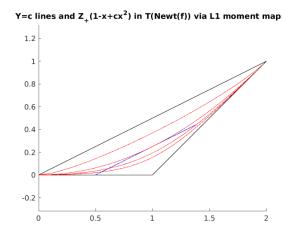
L3 Moment Map:

Sums of the exponents: $\lambda_i = \frac{e^{a_i x^i}}{\sum_j e^{a_j x^i}}$

Z₊ embedded in a curve inside a toric variety

$$f(x) = 1 - x_1 + cx_1^2$$

- Newton polytope
- Blue: Moment map
- Red: Plotted for different values of c



Isotopy Type

Theorem

For any honest n-variate circuit polynomial f, the zero set $Z_+(f)$ is ambiently isotopic in \mathbb{R}^n_+ to \mathbb{R}^{n-1}_+ or to a zero set of the form $Z_{\mathbb{R}}(z_1^2+z_2^2+...+z_l^2-(z_{l+1}^2+...+z_m^2)+\epsilon)$, where $l\leq m\leq n$ and $\epsilon\in\{0,-1,1\}$

Examples

Ambiently Isotopic to \mathbb{R}^{n-1}_+ :

- f(x,y)=x-y
 - Straight line in xy plane. In \mathbb{R}^n_+ , it represents a 1D subset which can be seen as \mathbb{R}^{n-1}_+

Isotopic to a quadratic form

•
$$x_1^2 + x_2^2 - x_3^2 = 1$$

•
$$x_1^2 + x_2^2 - x_3^2 = 0$$

$$x_1^2 + x_2^2 - x_3^2 = -1$$

3-Variate 4-nomial

$$f(x, y, z) = x^{-1}yz + xyz^{-1} + xy^{-1}z + x^{-1}y^{-1}z^{-1}$$

3-Variate 5-nomial

$$f(x, y, z) = x^{-1}yz + xyz^{-1} + xy^{-1}z + x^{-1}y^{-1}z^{-1}$$

