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Abstract. We establish quantum dynamical upper bounds for quasi-periodic
Schrödinger operators with Liouville frequencies. Our approach combines
semi-algebraic discrepancy estimates for the Kronecker sequence {nα} with
quantitative Green’s function estimates adapted to the Liouville setting.

1. Introduction

In this paper, we study the quantum dynamics of the one-dimensional dis-
crete Schrödinger operators. It is well-known that the solution of the time-
dependent Schrödinger equation i∂tψ = Hψ is given by ψ(t) = e−itHψ(0).
For simplicity, we assume that the initial conditions ψ(0) = ϕ has compact
support. The position operator is defined as

(Xψ)(n) = nψ(n).

To describe the evolution of ψ(t), we focus on the time-averaged pth moment
of the position operator defined via

⟨|XH |pϕ⟩(T ) :=
2

T

∫ ∞

0

e−2τ/T ⟨ψ(t), |X|pψ(t)⟩dτ.

Thus the growth of T 7→ ⟨|XH |pϕ⟩(T ) reflects the speed of which the particles
spread out.

In particular, we consider the quasi-periodic Schrödinger operators H = Hθ

on ℓ2(Z),
(Hθψ)n = ψn+1 + ψn−1 + λV (θ + nα)ψn,

where V ∈ Cω(T,R) is the potential, λ is the coupling constant, θ ∈ T the
phase, and α ∈ R\Q is the frequency. The quantum dynamical behavior of Hθ

depends heavily on the arithmetic property of the frequency α [Las96, GSB99,
JZ22, LP22]. We say α is Diophantine if ∥nα∥T ⩾ η|n|−γ for some η > 0, γ ⩾ 1
where ∥ · ∥T := dist(·,Z). We say α is Liouville if it is not Diophantine.

It has been shown that in the regime of large coupling λ and Diophantine
frequency α, the quantity ⟨|XHθ

|pϕ⟩(T ) remains finite for almost every θ, and
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we achieve the so called dynamical localization, see [Bou05a, GYZ23, BJ00,
JKL20]. However, dynamical localization fails to hold for generic θ ∈ T [JS94,
JL24, JLM24]. As a result, studying the growth of ⟨|XHθ

|pϕ⟩(T ) uniformly in
θ becomes significantly more challenging and interesting.

For Diophantine frequency α, the growth behavior of ⟨|XHθ
|pϕ⟩(T ) has been

investigated through various methods. For instance, Damanik–Tcheremchantsev
[DT07, DT08] proved an upper bound of T ε for trigonometric polynomial
potentials using the transfer matrix method. Han–Jitomirskaya [HJ19] es-
tablished a power-logarithmic bound (log T )C for a family of ergodic poten-
tials. Powell–Jitomirskaya [JP22] further proved a power-logarithmic bound
(log T )C by combining the large deviation theorem for transfer matrices with
techniques from Damanik–Tcheremchantsev [DT07, DT08]. Additionally, Jit-
omirskaya–Liu [JL21] introduced a new approach based on Green’s function
estimates at suitable scales, which works for long-range operators. For Dio-
phantine frequencies, they established an upper bound of the form T ε. More
recently, Shamis–Sodin [SS23] developed a method applicable to operators on
Zd(d ⩾ 1), using quantitative Green’s function estimates from [Liu22].

In [Liu23], Liu established quantum dynamical upper bounds for long-range
operators on Zd based on the sublinear bounds for the semi-algebraic discrep-
ancy:

# { |n| ⩽ N : θ + nα mod Z ∈ Θ } ⩽ N1−δ,

where Θ is a semi-algebraic set with suitable complexity. In [LPT+25, LPW24],
the authors further developed this approach by applying tools from analytic
number theory to analyze the discrepancy of semi-algebraic sets in the setting
of quasi-periodic operators with multi-frequency shift and skew-shift poten-
tials.

All known results establishing power-logarithmic upper bounds of the form
(log T )C crucially rely on the Diophantine condition for α. This naturally leads
to the question: what is the growth behavior of ⟨|XHθ

|pϕ⟩(T ) when α is Liou-
ville? For Liouville frequencies, sublinear discrepancy bounds fail, rendering
the methods of [Liu23, LPT+25, LPW24] inapplicable.

A key observation in this work is that the existence of just one suitably
chosen box of the Green’s function is already sufficient to obtain a power-
logarithmic bound of the form (log T )C . In contrast, the earlier result by
Jitomirskaya–Liu [JL21] achieved only a T ε bound under a similar one-box
assumption.

In this paper, we first prove a general criterion (Theorem 3.1) for deriving
quantum dynamical upper bounds. Notably, this criterion applies even to
long-range operators without underlying dynamical systems. The criterion is
based solely on the existence of a single suitably chosen box of the Green’s
function.
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We then turn to discrepancy estimates for shift dynamics {nα} on semi-
algebraic sets in the case of Liouville frequencies. As a consequence, we verify
the existence of a box of the desired Green’s function, extending the sublinear
bounds known in the Diophantine case to a weaker, yet still effective, setting.

As applications to quasi-periodic operators, we obtain the following results:

Theorem 1.1. Let V ∈ Cω(T,R) be non-constant and ϕ ∈ ℓ2(Z) be compactly
supported. Let η > 0, γ ⩾ 1. Suppose that α ∈ R satisfies

∥nα∥T ⩾ η|n|−γ for all n ∈ Z \ {0}.

Then there exist constants C0 > 0 and λ0(V ) > 0 such that if λ > λ0, the
following holds. For any p > 0, ε > 0, there exists T1(α, V, ϕ, p, ε) > 0 such
that for T ⩾ T1,

sup
θ∈T

⟨|XHθ
|pϕ⟩(T ) ⩽ (log T )pC0γ+ε.

Theorem 1.2. Let V ∈ Cω(T,R) be non-constant and ϕ ∈ ℓ2(Z) be compactly
supported. Let η > 0, κ > 0, γ > 1. Suppose that α ∈ R satisfies

∥nα∥T ⩾ ηe−κ(log |n|)γ for all n ∈ Z \ {0}.

Then there exist constants C0 > 0 and λ0(V ) > 0 such that if λ > λ0, the
following holds. For any p > 0, ε > 0, there exists T2(α, V, ϕ, p, ε) > 0 such
that for T ⩾ T2,

sup
θ∈T

⟨|XHθ
|pϕ⟩(T ) ⩽ exp

(
pκ(C0 + ε)γ(log log T )γ

)
.

Theorem 1.3. Let V ∈ Cω(T,R) be non-constant and ϕ ∈ ℓ2(Z) be compactly
supported. Let η > 0, κ > 0, 0 < γ < 1

C0
. Suppose that α ∈ R satisfies

∥nα∥T ⩾ ηe−κ|n|γ for all n ∈ Z \ {0}.

Then there exists constant λ0(V ) > 0 such that if λ > λ0, the following holds.
For any p > 0, ε > 0, there exists T3(α, V, ϕ, p, ε) > 0 such that for T ⩾ T3,

sup
θ∈T

⟨|XHθ
|pϕ⟩(T ) ⩽ exp

(
p(log T )C0γ+ε

)
.

Remark 1.4. In Theorem 1.1, 1.2, and 1.3, the constant C0 = 5C, where
C ⩾ 1 is the constant C(d) from Lemma 2.5 when d = 1.

Theorem 1.1 is not new; it was previously established in [JL21, Liu23, JP22,
LPT+25]. In fact, those works provide stronger versions with explicit esti-
mates on the constants, which our approach does not yield. However, we
include the result here to demonstrate the flexibility and effectiveness of our
method. Theorems 1.2 and 1.3 are new. In the same setting, we note that
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Damanik–Tcheremchantsev [DT07, DT08] proved an upper bound T ε. Theo-
rems 1.2 and 1.3 thus provide quantitative estimates for this T ε in the case of
Liouville frequencies.

2. Preliminaries

2.1. Transfer matrix and Lyapunov exponent. Denote by Cω
h (T,R) the

space of real-valued bounded analytic functions on the strip {θ : |ℑθ| < h}.
For any V ∈ Cω

h (T,R), define
∥V ∥h = sup

|ℑθ|<h

|V (θ)|.

Let Cω(T,R) :=
⋃

h>0C
ω
h (T,R).

Denote

SλV
E (θ) :=

(
E − λV (θ) −1

1 0

)
.

For any finite interval Λ = [x1, x2] ⊆ Z with x1 < x2, define the transfer matrix
from x1 to x2 as

MΛ(θ) :=

x1∏
k=x2−1

SλV
E (θ + kα).

Let HΛ(θ) := RΛHθRΛ, where RΛ is the projection onto Λ. In particular, for
Λ = [0, N − 1], denote HN(θ) := H[0,N−1](θ) and MN(θ) :=M[0,N−1](θ).

It is straightforward to verify that

M[x1,x2](θ) =Mx2−x1+1(θ + x1α).

For N ⩾ 1, it is well-known (see [Bou05a]) that

MN(θ) =

(
det(HN(θ)− E) − det(HN−1(θ + α)− E)
det(HN−1(θ)− E) − det(HN−2(θ + α)− E)

)
, (1)

with the convention det(H0(θ)− E) := 1 and det(H−1(θ)− E) := −1.
Define the finite-scale Lyapunov exponent as

LN(E) :=
1

N

∫
T
log ∥MN(θ)∥ dθ,

and the Lyapunov exponent as

L(E) := lim
N→∞

LN(E).

We recall the following result due to Furman:

Lemma 2.1 ([Fur97]). Let α ∈ R \Q and V ∈ Cω(T,R). Then

lim
|Λ|→∞

sup
θ∈T

1

|Λ|
log ∥MΛ(θ)∥ = L(E).
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The following lemma provides a criterion for the positivity of the Lyapunov
exponent.

Lemma 2.2 ([Bou05b]). Let α ∈ R \ Q. Suppose V ∈ Cω(T,R) is non-
constant. Then there exists λ0(V ) > 0 such that for all λ > λ0,

L(E) >
1

2
log λ for all E ∈ R.

Remark 2.3. According to the Thouless formula, Lemma 2.2 in fact yields
that L(z) > 1

2
log λ for all z ∈ C.

2.2. Green’s Function. For z /∈ σ(Hθ), the Green’s function of Hθ at z is
defined by

G(z, θ) := (Hθ − zI)−1,

and for a finite interval Λ, define

GΛ(z, θ) := (HΛ(θ)− zI)−1.

By Cramer’s rule, for Λ = [x1, x2] with x1 < x2 and x1 ⩽ m ⩽ n ⩽ x2, we
have

GΛ(z, θ)(m,n) =
det(Hm−x1(θ + x1α)− z) · det(Hx2−n(θ + nα)− z)

det(HΛ(θ)− z)
.

Using (1), it follows that

|GΛ(z, θ)(m,n)| ⩽
∥Mm−x1(θ + x1α)∥ · ∥Mx2−n(θ + nα)∥

| det(HΛ(θ)− z)|
. (2)

2.3. Semi-algebraic sets.

Definition 2.4 ([Bou05a]). We say S ⊆ Rd is a semi-algebraic set if it is
a finite union of sets defined by a finite number of polynomial inequalities.
More precisely, let {P1, P2, · · · , Ps} be a family of real polynomials to the
variables x = (x1, x2, · · · , xd) with deg(Pi) ⩽ q for i = 1, 2, · · · , s. A (closed)
semi-algebraic set S is given by the expression

S =
⋃
j

⋂
ℓ∈Lj

{x ∈ Rd : Pℓ(x) ςjℓ 0}, (3)

where Lj ⊆ {1, 2, · · · , s} and ςjℓ ∈ {⩾,⩽,=}. Then we say that the degree of
S, denoted by deg(S), is at most sq. In fact, deg(S) means the smallest sq
overall representation as in (3).

The following lemma has been stated in [Bou05a], where the author men-
tioned that it follows from the Yomdin–Gromov triangulation theorem [Gro87,
Yom87]. For the history and the complete proof of the Yomdin–Gromov tri-
angulation theorem, see [BN19].
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Lemma 2.5 ([Bou05a]). Let S ⊆ [0, 1]d be a semi-algebraic set of degree B.
Let ϵ > 0 be a small number and Leb(S) ⩽ ϵd. Then S can be covered by a
family of ϵ-balls with total number less than BC(d)ϵ1−d.

2.4. Discrepancy.

Definition 2.6 ([DT97]). Let {xn}Nn=1 be a sequence in [0, 1]d. The discrep-
ancy of xn is defined as

DN(xn) = sup
I∈R

∣∣∣∣#{1 ⩽ n ⩽ N : xn ∈ I}
N

− Leb(I)

∣∣∣∣,
where R denotes the family of all axis-aligned rectangles in [0, 1]d.

In particular, for xn = θ+ nα mod Z, we denote by DN(α) the discrepancy
for short. The Erdős–Turán–Koksma inequality provides an upper bound for
discrepancy.

Theorem 2.7 ([DT97, Erdős–Turán–Koksma Inequality]). Let {xn}Nn=1 be a
sequence in [0, 1]d and M ∈ N be arbitrary. Then

DN(xn) ⩽

(
3

2

)d(
2

M + 1
+

∑
0<|m|<M

1

r(m)

∣∣∣∣ 1N
N∑

n=1

e2πi⟨m,xn⟩
∣∣∣∣),

where r(m) =
∏d

i=1 max{1, |mi|} and |m| = max1⩽i⩽d |mi|.

3. Criterion for quantum dynamics

In this section, we establish a criterion for quantum dynamical upper bounds
based on Green’s function estimates on the suitable scales. The following
criterion works for the bounded self-adjoint long-range operators on ℓ2(Z).

Theorem 3.1. Let {Vn} ∈ ℓ∞(Z) be a real sequence, and consider the long-
range operator

(Hψ)n =
∞∑

m=−∞

Amψn−m + Vnψn,

where Am = A−m and |Am| ⩽ C1e
−c1|m| for all m ∈ Z. Assume that σ(H) ⊆

[−K + 1, K − 1] for some K ⩾ 3.
Let ϕ ∈ ℓ2(Z) with suppϕ ⊆ [−M,M ]. Suppose that for every |N | ⩾ N0,

there exists an interval I ⊆ [− |N |
2
,− |N |

4
]∩Z or I ⊆ [ |N |

4
, |N |

2
]∩Z satisfying the

following conditions:

(1) There exists a monotone increasing function Ψ : R+ → R+ such that

|I| ⩾ Ψ(|N |) ⩾ (log |N |)C2 , (4)

for some constant C2 > 1.
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(2) There exists 0 < c2 ⩽ c1 such that for any z = E + iϵ with |E| ⩽ K
and 0 < ϵ ⩽ ϵ0,

|GI(z)(m,n)| < e−c2|I|, for all |m− n| > |I|
20
. (5)

Then for any p > 0, there exists T0 = T0(M,K,C1, C2, c1, c2, ϵ0, p) such that
for all T ⩾ T0,

⟨|XH |pϕ⟩(T ) ⩽
[
Γ

(
80

c2
log T

)]p
,

where Γ : R+ → R+ is the inverse function of Ψ.

Proof. Let z = E + i
T
where |E| ⩽ K and T ⩾ 1

ϵ0
. Recall the following lemma

essentially proved by Jitomirskaya–Liu [JL21].

Lemma 3.2 ([JL21, Lemma 2.3]). Assume for some interval I with I ⊆
[− |N |

2
,− |N |

4
] or I ⊆ [ |N |

4
, |N |

2
], (5) holds. Then for any |j| ⩽M ,

|G(z)(j,N)| ≲C1,c1 T
4e−

c2
20

|I|.

By Lemma 3.2 and (4), for any |j| ⩽M and |n| ⩾ N0,

|G(z)(j, n)| ≲C1,c1 T
4e−c3Ψ(|n|), (6)

where c3 =
c2
20
. Denote

a(j, n, T ) =
2

T

∫ ∞

0

e−2τ/T |⟨δn, e−iTHδj⟩|2dτ.

According to Parseval’s identity (see [DF22]), one has

a(j, n, T ) =
1

πT

∫
R
|G(z)(j, n)|2dE.

Since
∑

n∈Z |⟨δn, e−iTHδj⟩|2 = 1, one has∑
n∈Z

a(j, n, T ) = 1 for any |j| ⩽M. (7)

By (7), for any R ⩾ 1,

⟨|XH |pϕ⟩(T ) ⩽
( ∑

|n|⩽R

+
∑
|n|⩾R

) ∑
|j|⩽M

|n|pa(j, n, T )

≲M Rp +
∑
|j|⩽M

∑
|n|⩾R

|n|pa(j, n, T ).
(8)
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By the Combes–Thomas estimate (see [Aiz94]), for sufficiently large |n|,

a(j, n, T ) ⩽
1

πT

(∫
|E|⩾K

+

∫
|E|⩽K

)
|G(z)(j, n)|2dE

≲K
1

T
e−c4|n| +

1

T

∫
|E|⩽K

|G(z)(j, n)|2dE,
(9)

where c4 > 0 is a universal constant. By (6), we have

1

T

∫
|E|⩽K

|G(z)(j, n)|2dE ≲C1,c1,K T 7e−2c3Ψ(|n|). (10)

Combining (8), (9) and (10), we get

⟨|XH |pϕ⟩(T ) ≲M,K,C1,c1 R
p +

1

T

∑
|n|⩾R

|n|pe−c4|n| + T 7
∑
|n|⩾R

|n|pe−2c3Ψ(|n|)

≲M,K,C1,c1 R
p + T 7

∑
|n|⩾R

|n|pe−2c3Ψ(|n|).

Choose R such that Ψ(R) = 3.9
c3

log T , that is R = Γ(3.9
c3

log T ). Hence for

sufficiently large T ⩾ T0(M,K,C1, C2, c1, c3, ϵ0, p),

⟨|XH |pϕ⟩(T ) ⩽
[
Γ

(
4

c3
log T

)]p
.

This finishes the proof. □

In particular, we are interested in the following Ψ(·).

Corollary 3.3. Under the assumptions of Theorem 3.1, if Ψ(·) takes the form

Ψ(N) = N δ

for some δ > 0, then for any ε > 0, there exists T1 = T1(T0, δ, ε) > 0 such that
for all T ⩾ T1,

⟨|XH |pϕ⟩(T ) ⩽ (log T )
p
δ
+ε.

Corollary 3.4. Under the assumptions of Theorem 3.1, if Ψ(·) takes the form

Ψ(N) = exp

(
δ(logN)σ

)
,

for some δ, σ > 0, then for any ε > 0, there exists T2 = T2(T0, δ, σ, ε) > 0 such
that for all T ⩾ T2,

⟨|XH |pϕ⟩(T ) ⩽ exp

[
p

(
1 + ε

δ
log log T

)1/σ]
.
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Corollary 3.5. Under the assumptions of Theorem 3.1, if Ψ(·) takes the form
Ψ(N) = (logN)1/δ

for some 0 < δ < 1, then for any ε > 0, there exists T3 = T3(T0, δ, ε) > 0 such
that for all T ⩾ T3,

⟨|XH |pϕ⟩(T ) ⩽ exp

(
p(log T )δ+ε

)
.

4. Discrepancy estimates

We first prove a few fundamental results regarding discrepancy estimates.

Theorem 4.1. Let Φ : R+ → R+ be such that Φ(t)/t is monotone increasing
on [ρ,∞) for some ρ > 0. Let µ := maxt∈[1,ρ] Φ(t) <∞. Let α ∈ Rd satisfy

∥⟨n, α⟩∥T >
1

Φ(|n|)
for any n ∈ Zd \ {0}. (11)

Then for any M ⩾ ρ,

DN(α) ≲ρ,µ,d
1

M
+

1

N
+

Φ(M) log(Φ(M))(logM)d

MN
.

Proof. Without loss of generality, we assume ρ ⩾ 2. By Theorem 2.7, for any
M ∈ N we have

DN(α) ≲d
1

M
+

1

N

M∑
|m|=1

1

r(m)

∣∣∣∣ N∑
k=1

e2πik⟨m,α⟩
∣∣∣∣,

where r(m) =
∏d

i=1max{1, |mi|} and |m| = max1⩽i⩽d |mi|. Since∣∣∣∣ N∑
k=1

e2πikx
∣∣∣∣ ≲ min{N, ∥x∥−1

T },

we have

1

N

ρ∑
|m|=1

1

r(m)

∣∣∣∣ N∑
k=1

e2πik⟨m,α⟩
∣∣∣∣ ≲ 1

N

ρ∑
|m|=1

1

r(m) · ∥⟨m,α⟩∥T
≲ρ,µ

1

N
,

and thus

DN(α) ≲ρ,µ,d
1

M
+

1

N
+

1

N

M∑
|m|=ρ

1

r(m) · ∥⟨m,α⟩∥T
=:

1

M
+

1

N
+
S0

N
. (12)

Let r = (r1, · · · , rd) ∈ Nd such that

log ρ

log 2
⩽ ri ⩽

logM

log 2
for each 1 ⩽ i ⩽ d.
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Fix any r and denote

Tr := {m ∈ Zd : 2ri−1 ⩽ |mi| ⩽ 2ri for 1 ⩽ i ⩽ d}.
Thus

S0 =
∑
r

∑
m∈Tr

1

r(m) · ∥⟨m,α⟩∥T

⩽
∑
r

2−
∑d

i=1(ri−1)
∑
m∈Tr

1

∥⟨m,α⟩∥T
.

(13)

Without loss of generality, we assume r satisfies r1 = |r|. By (11), for any
m ∈ Tr we have the estimate

∥⟨m,α⟩∥T ⩾
1

Φ(|m|)
⩾

1

Φ(2r1)
.

Define ∆ = Φ(2r1). We need the following result:

Lemma 4.2. For all l ⩽ ⌊∆⌋, there are at most 2d+1 points m in Tr satisfying
the inequality

l∆−1 ⩽ ∥⟨m,α⟩∥T ⩽ (l + 1)∆−1.

Proof. Otherwise if there exist (2d+1 + 1) points, then either there will be
(2d + 1) points satisfying

∥⟨m,α⟩∥T = {⟨m,α⟩},
or there will be (2d + 1) points satisfying

∥⟨m,α⟩∥T = 1− {⟨m,α⟩}.
In either case, there exists a hyperoctant of Zd such that at least two points
m,m′ among (2d + 1) points are located in this hyperoctant, which means

mjm
′
j ⩾ 0, for all j = 1, · · · , d.

It would follow that
0 < |m−m′| < 2r1−1

and

∥⟨m−m′, α⟩∥T ⩽ {⟨m−m′, α⟩}
= |{⟨m,α⟩} − {⟨m′, α⟩}|
= |∥⟨m,α⟩∥T − ∥⟨m′, α⟩∥T|
⩽ ∆−1.

Using (11), we arrive at

∥⟨m−m′, α⟩∥T ⩾
1

Φ(|m−m′|)
>

1

Φ(2r1)
= ∆−1,
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which is a contradiction. □

From Lemma 4.2, we see that∑
m∈Tr

1

∥⟨m,α⟩∥T
≲d ∆

[∆]∑
l=1

1

l
≲d ∆ log(∆).

Substituting the above estimate into (13) then yields

S0 ≲d

log2 M∑
r1=log2 ρ

2−r1∆ log(∆)(logM)d−1.

By the assumption that Φ(t)/t is monotone increasing, we thus have

S0 ≲d M
−1Φ(M) log(Φ(M))(logM)d. (14)

Substituting (14) into (12) gives

DN(α) ≲ρ,µ,d
1

M
+

1

N
+

Φ(M) log(Φ(M))(logM)d

MN
.

This finishes the proof. □

In particular, we are interested in the following cases.

Corollary 4.3. Let η > 0, γ ⩾ 1. Let α ∈ Rd satisfy

∥⟨n, α⟩∥T ⩾ η|n|−γ for all n ∈ Zd \ {0}.
Then for sufficiently large N ,

DN(α) ≲d,γ,η N
−1/γ(logN)d+1.

Proof. Let Φ(t) = η−1tγ. Then Φ(t)/t is monotone increasing on [2,∞). Apply
Theorem 4.1 with Φ(M) = N , that is,

M = (ηN)1/γ,

we have

DN(α) ≲d,γ,η
1

M
+

1

N
+

logN(logM)d

M

≲d,γ,η N
−1/γ(logN)d+1.

□

Corollary 4.4. Let η > 0, κ > 0, γ > 1. Let α ∈ Rd satisfy

∥⟨n, α⟩∥T ⩾ ηe−κ(log |n|)γ for all n ∈ Zd \ {0}.
Then for sufficiently large N ,

DN(α) ≲d,κ,γ,η (logN)1+d/γ exp

[
−
(
1

κ
logN

)1/γ]
.
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Proof. Let Φ(t) = η−1eκ(log t)
γ
. Then there exists ρ (depending on κ, γ) such

that Φ(t)/t is monotone increasing on [ρ,∞). Apply Theorem 4.1 with Φ(M) =
N , that is,

M = exp

[(
1

κ
log(ηN)

)1/γ]
,

we have

DN(α) ≲κ,γ,d,η
1

M
+

1

N
+

logN(logM)d

M

≲d,κ,γ,η (logN)1+d/γ exp

[
−
(
1

κ
logN

)1/γ]
.

□

Corollary 4.5. Let η > 0, κ > 0, 0 < γ < 1. Let α ∈ Rd satisfy

∥⟨n, α⟩∥T ⩾ ηe−κ|n|γ for all n ∈ Zd \ {0}.

Then for sufficiently large N ,

DN(α) ≲d,κ,γ,η (logN)−1/γ.

Proof. Let Φ(t) = η−1eκt
γ
. Then there exists ρ (depending on κ, γ) such that

Φ(t)/t is monotone increasing on [ρ,∞). Apply Theorem 4.1 with Φ(M) =√
N , that is,

M =

(
1

κ
log(η

√
N)

)1/γ

,

we have

DN(α) ≲d,κ,γ,η
1

M
+

1

N
+

logN(logM)d

M
√
N

≲d,κ,γ,η (logN)−1/γ.

□

The following semi-algebraic discrepancy estimate is useful and will be ap-
plied repeatedly.

Theorem 4.6. Suppose DN(xn) ⩽ YN
N→∞−−−→ 0. Let S ⊆ [0, 1]d be a semi-

algebraic set with degree B and Leb(S) < YN . Then

#{xn ∈ S} ⩽ 2BC(d)NY
1/d
N .

Proof. Let ϵ = Y
1/d
N . Then

Leb(S) < YN = ϵd.
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By Lemma 2.5, the set S can be covered by at most BC(d)ϵ1−d balls of radius
ϵ. Let D be one such ball. Then by the definition of discrepancy,

#{xn ∈ D} ⩽ N Leb(D) +NDN(α) ⩽ 2NYN .

Summing over all such balls, we obtain

#{xn ∈ S} ⩽ 2BC(d)NY
1/d
N .

This finishes the proof. □

Theorem 4.6 was proved for YN = N−ς with ς > 0 in [Liu22].

5. Large deviation theorem for Liouville frequencies

Since we are interested in quantum dynamics with Liouville frequencies, we
will need the following large deviation theorem for transfer matrices, which
holds in the Liouville setting.

Theorem 5.1 ([HZ22]). Let α ∈ R \ Q and V ∈ Cω
h (T,R). There exist

constants c̃1(V, h), c̃2(V, h) ∈ (0, 1) such that, if 1

0 ⩽ β(α) < c̃1 inf
E∈[a,b]

L(E),

there exists N1 = N1(α, infE∈[a,b] L(E), V, h) > 0 such that for any N ⩾ N1,
the following large deviation estimates hold uniformly in E ∈ [a, b]:

(1) If 0 < L(E) < 1, then

Leb

{
θ :

∣∣∣∣ 1N log ∥MN(θ)∥ − LN(E)

∣∣∣∣ > 1

100
L(E)

}
< e−c̃2L(E)N .

(2) If L(E) ⩾ 1, then

Leb

{
θ :

∣∣∣∣ 1N log ∥MN(θ)∥ − LN(E)

∣∣∣∣ > 1

100
L(E)

}
< e−c̃2L(E)2N .

Remark 5.2. In fact, 1
100

in Theorem 5.1 can be replaced by any 0 < κ < 1.
See Remark 1.2 in [HZ22].

The conclusion of Theorem 5.1 remains valid for complex energies E + iϵ,
where E ∈ [a, b] and |ϵ| ⩽ ϵ0 for some sufficiently small ϵ0 > 0 because the proof
of Theorem 5.1 only involves the subharmonicity of the Lyapunov exponent.
More precisely, we have the following:

1Recall that β(α) = lim sup|k|→∞ − log ∥kα∥T
|k| .
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Corollary 5.3. Under the same assumptions as in Theorem 5.1, there exist
N1 = N1(α, V, a, b) > 0 and ϵ0 = ϵ0(α, V, a, b) > 0 such that for any N ⩾ N1,
the following holds uniformly for z = E + iϵ where E ∈ [a, b] and |ϵ| ⩽ ϵ0:

Leb

{
θ :

∣∣∣∣ 1N log ∥MN(θ)∥ − LN(z)

∣∣∣∣ > 1

100
L(z)

}
< e−c̃2L(z)N .

With Theorem 5.1 and Corollary 5.3 in hand, we deduce the following large
deviation theorem for Green’s function in the Liouville setting.

Theorem 5.4. Let α ∈ R \ Q and V ∈ Cω
h (T,R). There exist constants

c̃1(V, h), c̃2(V, h) ∈ (0, 1) such that, if

0 ⩽ β(α) < c̃1 inf
E∈[a,b]

L(E),

there exist N2 = N2(α, V, a, b) > 0 and ϵ0 = ϵ0(α, V, a, b) > 0 such that for
any N ⩾ N2, and z = E + iϵ with E ∈ [a, b] and |ϵ| ⩽ ϵ0, the following holds.
There exists a subset ΘN ⊆ T (depending on z) with

Leb(ΘN) ⩽ e−c̃2L(z)(2N+1), deg(ΘN) ≲h L(z)
2N5,

such that for any θ /∈ ΘN , one of the intervals

Λ = [−N,N ]; [−N,N − 1]; [−N + 1, N ]; [−N + 1, N − 1]

will satisfy

|GΛ(z)(m,n)| ⩽ e−
1
2
L(z)|m−n|, for any |m− n| > |Λ|

20
.

Proof. By Corollary 5.3, for any N ⩾ N1(α, V, a, b), there exists a subset ΘN ⊆
T with Leb(ΘN) ⩽ e−c̃2L(z)(2N+1) such that for any θ /∈ ΘN ,

∥M[−N,N ](θ)∥ ⩾ e
99
100

(2N+1)L(z).

Then it follows from (1) that for one of the intervals

Λ = [−N,N ]; [−N,N − 1]; [−N + 1, N ]; [−N + 1, N − 1]

we have

| det(HΛ(θ)− z)| ⩾ 1

4
e

99
100

(2N+1)L(z). (15)

By Lemma 2.1 and the compactness argument, for any ε > 0, there exists
N̄1 = N̄1(α, V, a, b, ε) such that for any N ⩾ N̄1, we have

sup
θ∈T

∥MN(θ)∥ ⩽ eN(L(z)+ε). (16)

It follows from (2),(15) and (16) that for any θ /∈ ΘN , we have

|GΛ(θ)(m,n)| ⩽ e
1

100
|Λ|L(z)e|Λ|εe−L(z)|m−n|, for any m,n ∈ Λ.
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In particular, for any θ /∈ ΘN and m,n ∈ Λ with |m− n| ⩾ |Λ|/20,

|GΛ(θ)(m,n)| ⩽ e−
1
2
L(z)|m−n|.

In the following, we estimate the complexity. Consider the property

|GΛ(θ)(m,n)| ⩽ e
1

100
|Λ|L(z)e|Λ|εe−L(z)|m−n|, for any m,n ∈ Λ. (17)

Since V ∈ Cω
h (T,R), we write V (θ) =

∑
k∈Z V̂ke

2πikθ. Consider its Fourier

truncation V1(θ) =
∑

|k|⩽C′N V̂ke
2πikθ where C ′ = 100

2πh
L(z). Then

sup
θ∈T

|V1(θ)− V (θ)| ⩽ ∥V ∥he−2πhC′N ⩽ ∥V ∥he−100L(z)N .

By (1) and a telescoping argument, for any 1 ⩽ J ⩽ |Λ|, we have

sup
θ∈T

| det(HJ(θ, V )− z)− det(HJ(θ, V1)− z)|

⩽ sup
θ∈T

∥∥∥∥ J∏
j=1

SV
z (θ + jα)−

J∏
j=1

SV1
z (θ + jα)

∥∥∥∥
⩽ sup

θ∈T
|V1(θ)− V (θ)|JeJ(L(z)+ε)

⩽ e−20|Λ|L(z),

which implies for any θ ∈ ΘN ,

|GΛ(θ, V )(m,n)−GΛ(θ, V1)(m,n)| ⩽ e−10|Λ|L(z).

Thus we may substitute V by V1 in (17), that is,

eL(z)|m−n|| det(HΛ(V1, θ)−E)m,n| ⩽
1

2
e

1
100

|Λ|L(z)e|Λ|ε| det(HΛ(V1, θ)− z)|, (18)

whereMm,n denotes the (m,n)-minor of matrixM . Using the Hilbert-Schmidt
norm, we may consider the tighter inequality,∑

m,n∈Λ

e2L(z)|m−n|
(
det(HΛ(V1, θ)− z)m,n

)2

⩽
1

4
e

1
50

|Λ|L(z)e|Λ|ε
(
det(HΛ(V1, θ)− z)

)2

.

(19)

Clearly, (19) is of the form

P1(cos 2πθ, sin 2πθ) ⩾ 0,

where P1 is a polynomial with degree at most C ′2N4. One further truncates
“cos” and “sin” by a Taylor polynomial of degree at most N , and get a tighter
inequality of the form

P2(θ) ⩾ 0,
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where the degree of P2 is at most C ′2N5. Denote Θ′
N = {θ ∈ [0, 1] : P2(θ) < 0}.

By the definition of the degree of semi-algebraic sets (see Definition 2.4), we
have deg(Θ′

N) ⩽ C ′2N5.
For any θ /∈ ΘN , it is easy to check that P2(θ) ⩾ 0. Thus Θ′

N ⊆ ΘN and

Leb(Θ′
N) ⩽ Leb(ΘN) ⩽ e−c̃2L(z)(2N+1).

Finally one may replace ΘN by Θ′
N . This finishes the proof. □

6. Proof of main results

We are now ready to prove our main results by combining the tools developed
in Sections 3, 4 and 5.

6.1. Proof of Theorem 1.1.

Proof. Fix a small ε > 0 and take N sufficiently large. Let C ⩾ 1 be the
constant C(d) from Lemma 2.5 when d = 1. Define an interval I centered at
0 and of length |I| = N δ with δ = 1

5γC
− ε. Set Ij = I + j for |j| ⩽ N .

Recall that for any θ ∈ T, one has HIj(θ) = HI(θ + jα). Then for any

z = E + i
T
,

GIj(z, θ) = GI(z, θ + jα). (20)

By Lemma 2.2 and Theorem 5.4, there exists a subset ΘI ⊆ T such that
Leb(ΘI) ⩽ e−c̃2L(z)|I| and deg(ΘI) ≲h L(z)2|I|5, with the property that for
any θ /∈ ΘI and |m− n| ⩾ |I|/20,

|GI(z, θ)(m,n)| ⩽ e−
1
2
L(z)|m−n| ⩽ e−

log λ
80

|I|.

Applying Theorem 4.6 and Corollary 4.3, for any θ ∈ T, we obtain

#
{
|j| ⩽ N : θ + jα mod Z ∈ ΘI

}
≲γ,η (degΘI)

CNN−1/γ(logN)2

≲γ,η,h L(z)
2CN1+5δC− 1

γ (logN)2

= o(N),

which implies that there exists some |j′| ⩽ N such that θ + j′α mod Z /∈ ΘI .
Consequently,

|GI(z, θ + j′α)(m,n)| ⩽ e−
log λ
80

|I|.

Moreover, by (20) and |Ij′| = |I|, it follows that

|GIj′
(z, θ)(m,n)| ⩽ e−

log λ
80

|Ij′ |.

Finally, applying Corollary 3.3 with Ψ(N) = N δ where δ = 1
5γC

− ε, we

conclude
sup
θ∈T

⟨|XHθ
|pϕ⟩(T ) ⩽ (log T )5pγC+ε.

This completes the proof. □
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6.2. Proof of Theorem 1.2.

Proof. We present only the essential steps, as the proof is similar to that of
Theorem 1.1.

Fix a small ε > 0 and take N sufficiently large. Let C ⩾ 1 be the constant
C(d) from Lemma 2.5 when d = 1. Define an interval I centered at 0 and of
length

|I| = exp
[
δ(logN)1/γ

]
with

δ =
1

5C

[(
1

κ

)1/γ

− ε

]
.

Applying Theorem 4.6 together with Corollary 4.4, we obtain that for any
θ ∈ T,

#
{
|j| ⩽ N : θ + jα mod Z ∈ ΘI

}
≲γ,κ,η (degΘI)

CN(logN)1+
1
γ exp

[
−
(
1

κ
logN

)1/γ]
≲γ,κ,η,h L(z)

2CN exp
[
2 log logN − ε(logN)1/γ

]
= o(N),

which implies that there exists |j′| ⩽ N such that

|GIj′
(z, θ)(m,n)| ⩽ e−

log λ
80

|Ij′ |.

Applying Corollary 3.4 with Ψ(N) = exp
[
δ(logN)1/γ

]
, we conclude

sup
θ∈T

⟨|XHθ
|pϕ⟩(T ) ⩽ exp

[
p

(
5C + ε

(1/κ)1/γ
log log T

)γ]
⩽ exp

(
pκ(5C + ε)γ(log log T )γ

)
.

□

6.3. Proof of Theorem 1.3.

Proof. We present only the essential steps, as the proof is similar to that of
Theorem 1.1.

Denote by C ⩾ 1 the constant C(d) from Lemma 2.5 when d = 1. Since
γ < 1

5C
, fix a small ε > 0 such that 5Cγ + ε < 1. Let N be sufficiently large,

and define an interval I centered at 0 with length

|I| = (logN)1/δ,

where
δ = 5Cγ + ε.
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Applying Theorem 4.6 in combination with Corollary 4.5, we obtain that
for any θ ∈ T,

#{|j| ⩽ N : θ + jα mod Z ∈ ΘI} ≲κ,γ,η (degΘI)
CN(logN)−1/γ

≲κ,γ,η,h L(z)
2CN(logN)

5C
δ
− 1

γ

= o(N),

which implies that there exists |j′| ⩽ N such that

|GIj′
(z, θ)(m,n)| ⩽ e−

log λ
80

|Ij′ |.

Applying Corollary 3.5 with Ψ(N) = (logN)1/δ yields

sup
θ∈T

⟨|XHθ
|pϕ⟩(T ) ⩽ exp

(
p(log T )5Cγ+ε

)
.

□
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