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The Schrödinger Equation

The dynamics of a quantum particle are described by a complex-valued
wavefunction, ψ

Time evolution is governed by the Schrödinger equation

i
∂ψ

∂t
=
∂2ψ

∂x2
+ V (x)ψ(x)

This can be spatially discretized (eg. for a crystal lattice, numerical
simulation), to obtain

i
∂ψn

∂t
= (ψn+1 − 2ψn + ψn−1) + Vnψn

where now ψ, V are sequences
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Quantum Dynamics - Schrödinger Operators

Definition 1.1: Schrödinger operator

A Schrödinger operator H : ℓ2(Z) → ℓ2(Z) acts on a wavefunction ψ :
Z → C according to

(Hψ)n = ψn+1 + ψn−1 + Vnψn, (1)

where V : Z → R is the potential

.
Comes from discretizing the 1D Hamiltonian operator: ∂2

∂x2 + V (x).

Our goal is to study ψ(n, t) given by

i
∂ψ

∂t
= Hψ. (2)

Given ψ(0) = ϕ, this has the exact solution ψ(t) = e−itHϕ.

|ψn|2 represents the probability of measurement at site n.
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Quantum Dynamics - Schrödinger Operators

A Schrödinger operator can be expressed as an infinte matrix

H =



. . .

V−2 1 0 0 0
1 V−1 1 0 0
0 1 V0 1 0
0 0 1 V1 1
0 0 0 1 V2

. . .


We can consider its restriction to a finite interval, eg. [0,3]:

H[0,3] =


V0 1 0 0
1 V1 1 0
0 1 V2 1
0 0 1 V3


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Quantum Dynamics - Example 1

ϕn = e−n2/2 Vn = 0

Insert diffusion example
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Quantum Dynamics - Example 2

ϕn = eni−(n+µ)2/2 + e−ni−(n−µ)2/2 Vn = 0

Insert interference example
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Quantum Dynamics - Example 3

ϕn = eni−(n+µ)2/2 Vn =

{
1, 140 ≤ n ≤ 150

0, otherwise

Insert reflection example
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Quantum Dynamics - Transport

Definition 1.2: pth moment

For an initial state ϕ, we define the pth moment as:

⟨|XH |pϕ⟩(t) =
∑
n∈Z

|n|p|ψn(τ)|2

Then, we define the average pth moment as:

⟨|X̃H |pϕ⟩(t) =
2

t

∫ ∞

0

e2τ/t
∑
n∈Z

|n|p|ψn(τ)|2 dτ

Captures how ψ(t) = e−itHϕ spreads out over time
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Transport - Example 1

If V is periodic, the pth moment grows like

⟨XH |pϕ⟩ ∼ tp

This is known as ballistic transport [Fil20].

Insert periodic transport example
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Transport - Example 2

If V is random, the pth moment is bounded:

⟨XH |pϕ⟩ ≤ C for some C > 0

This is known as dynamic localization [Klein].

Insert random transport example
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Penrose Tilings

Figure: Image By Inductiveload - Own work, Public Domain, Link
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The Fibonacci Hamiltonian

Consider a sequence SN of words where
S0 = 0 and SN is defined as the N -th
application of the substitution rule

0 7→ 01 and 1 7→ 0

Taking the limit as N → ∞, one obtains
the Fibonacci Word (Hamiltonian) Eg.

0100101001001 · · ·

Well studied model of Quasi-Crystals.
Figure: Line of Slope 1

ϕ
. By Prokofiev -

Own work, CC BY-SA 3.0, Link
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Quasi-Periodic Potentials

Definition 1.3: Quasi-periodic

If f : R → R is a periodic, analytic function, and if α is an irrational number,
we call

V (n) = f(nα)

a quasi-periodic potential.
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Quasi-Periodic Potentials

V (n) = cos2(nπα)
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Continued Fractions

Fact 1.4: Contined fraction expansion

Every positive real number can be expressed as a continued fraction of the
form

α = a0 +
1

a1 +
1

a2+···

for ai ∈ N, and we write α = [a0; a1, a2, . . . ].

Rational α have finite expansions

Irrational α have infinite expansions

Terminating expansion gives the best rational approximation
Growth rate of ai determines how closely approximated by rationals α is.

√
5 + 1

2
= [1; 1, 1, 1, . . . ]

∞∑
k=1

1

10k!
= [0; 9, 11, 99, 1, 10, 9, 999999999999, 1, . . . ]
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Diophantine Conditions

Consider what happens when we plot the sequence e2πinα for rational α:

Rational animation

α =
3

11
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Diophantine Conditions

xn = e2πinα

ϕ animation

α =

√
5 + 1

2

Liouville animation

α =

∞∑
n=1

1

10k!
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Diophantine Conditions

Definition 1.7: Diophantine

We call α ∈ R diophantine if there is some γ > 0, τ ≥ 1 such that for all
m ∈ Z,

∥mα∥ := dist(mα,Z) ≥ γ

|m|τ

We call these poorly approximable by rationals, or colloquially, “more irrational”

Definition 1.8: Liouville

We call m ∈ R Liouville if, for all γ > 0, τ > 1, there are infintely many
m ∈ Z for which

∥mα∥ < γ

|m|τ

We call these too well approximable by rationals, or colloquially, “less irrational”

Bradshaw, de Jong, Wang Texas A&M University 19 / 53
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Transport - Example 3

If α is diophantine, the transport is similar to the random case [BG00]

Insert diophantine transport example

Bradshaw, de Jong, Wang Texas A&M University 20 / 53



Transport - Example 4

If α is Liouville, the transport is similar to the periodic case

Insert Liouville transport example

Bradshaw, de Jong, Wang Texas A&M University 21 / 53



Main Results

We determine bounds on transport for a number of Diophantine-like conditions

∥mα∥ ≥ 1

|m|γ
=⇒ ⟨XH |pϕ⟩ ≤ (log t)pc

∥mα∥ ≥ e−κ(log |n|)γ =⇒ ⟨XH |pϕ⟩ ≤ ep(log log t)c

∥mα∥ ≥ e−κ|n|γ =⇒ ⟨XH |pϕ⟩ ≤ ep(log t)c
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Definitions

Definition 2.1: Discrepancy

Let {xn}n∈N be a sequence in [0, 1)d. Define PN = {x1,x2, ...,xN} then
define the Discrepancy of PN as

DN (PN ) = sup
I⊂[0,1)d

∣∣∣∣∣ 1N
N∑

n=1

χI(xn)−Vol(I)

∣∣∣∣∣ (3)

Where I is an axis-aligned rectangle.

Definition 2.2: Kronecker Sequence

Let α = (α1, α2, ..., αd) ∈ Rd. The Kronecker Sequence {xn}n∈N of α
is defined via the relation:

xn := nα (mod Zd) (4)

Bradshaw, de Jong, Wang Texas A&M University 24 / 53



Example 1 in R

a =
√
2

Expected: (0.71− 0.64) · 1000 = 70
Discrepancy: 77−70

1000 = 0.007

Bradshaw, de Jong, Wang Texas A&M University 25 / 53



Example 2 in R

a =
√
2

Expected: (1− 0.67) · 100000 = 33000
Discrepancy: 33404−33000

100000 = 0.00404

Bradshaw, de Jong, Wang Texas A&M University 26 / 53



Example 3 in R
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Example 4 in R2

Expected: ((0.7− 0.3) · (0.8− 0.4)) · 10000 = 1600
Discrepancy: 1607−1600

10000 = 0.0007

Bradshaw, de Jong, Wang Texas A&M University 28 / 53



Discrepancy as N → ∞
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Behavior of Discrepancy

Theorem 2.3: Denseness of Kronecker Sequences

Let α = (α1, α2, ..., αd) ∈ Rd Then the Kronecker sequence {nα}n∈N is
dense in the unit torus [0, 1)d iff {1, α1, ..., αd} is linearly independent over
the integers. We henceforth call this condition rationally independent.

Hence, DN ({nα}) → 0 as N → ∞ if and only if α is rationally independent.

Interested in leading order approximation of DN (logarithmic, exponential,
polynomial?)

Heavily depends on whether α is Diophantine or Liouville.

Bradshaw, de Jong, Wang Texas A&M University 30 / 53



Previous Results

Theorem ([DT97])

Suppose α ∈ Rd satisfies

∥mα∥ = dist(m ·α,Z) ≳ γ

|m|a
(5)

for all m ∈ Zd for some a ≥ 1, γ > 0. Then for some δ, C > 0

DN ({xn}) ≤ CN−δ (6)

Bradshaw, de Jong, Wang Texas A&M University 31 / 53



Our Results

Theorem

Suppose α ∈ Rd is such that for some γ,C > 0

∥mα∥ ≳ e−C|m|γ (7)

for all m ∈ Zd and for some γ,C > 0. Then for some C1 > 0

DN ({xn}) ≤ C1(logN)−1/γ (8)

Bradshaw, de Jong, Wang Texas A&M University 32 / 53



Proof of Theorem

Proof.

1 Partition Zd as in figure.

2 Bound each partition, and count the number
within each partition.

3 Apply to Erdős-Turan inequality

4 Summing values together yields:

DN ≲
1

M
+

1

N
+
e(C(M−1)dγ)(M − 1)d

2N

5 Choose M = e.5CNγ

. Yields

DN ≤ C1(logN)−1/γ

x

y

Bradshaw, de Jong, Wang Texas A&M University 33 / 53



Our Results

Theorem

Suppose α ∈ Rd is such that for some γ,C > 0

∥mα∥ ≳ e−C(log |m|)γ (9)

for all m ∈ Zd. Then for some δ, C > 0

DN ({xn}) ≤

{
Ce−(logN)1/γ γ ≥ 1

CN−δ γ < 1
(10)

Bradshaw, de Jong, Wang Texas A&M University 34 / 53



Counting using Discrepancy

Recall

DN (PN ) = sup
I⊂[0,1)d

∣∣∣∣∣ 1N
N∑

n=1

χI(nα)−Vol(I)

∣∣∣∣∣ (11)

Hence, for a given rectangle

N∑
n=1

χI(nα) ≤ N(DN −Vol(I)) (12)

Bradshaw, de Jong, Wang Texas A&M University 35 / 53



Section 3

1 Quantum Dynamics
Transport
Quasi-Periodic Potentials

2 Discrepancy Estimates of Kronecker Sequences
Examples of Discrepancy
Bounds

3 Semi-Algebraic Sets

4 Application to Quantum Dynamics

Bradshaw, de Jong, Wang Texas A&M University 36 / 53



Expansion to Semi-Algebraic Sets

0 1

1

0 1

1
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Semi-Algebraic Sets

Definition 3.1: Semi-Algebraic
Sets

A set S is semi-algebraic if it is a
finite union of polynomial inequal-
ities and equalities.

Head: x2 + y2 ≤ 1

Left eye: (x+ 0.4)2 + (y − 0.4)2 ≤ 0.01

Right eye: (x− 0.4)2 + (y − 0.4)2 ≤ 0.01

Smile: 1.5x2 − 0.7 < y < 1.5x2 − 0.6, |x| < 0.5
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Expansion to Semi-Algebraic Sets

Theorem 3.2: [Bou05]

Let S ⊆ [0, 1)n be a semi-
algebraic set of degree B. Let
Vol(S) < ϵn for some ϵ > 0. S
can be covered by BC(ϵ)1−n ϵ-
balls.

Recall: V is analytic, hence V is
well approximated by polynomials

0 1

1

x2 + y2 − .49 < 0
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Expansion to Semi-Algebraic Sets

Theorem 3.3: [Bou05]

Let S ⊆ [0, 1)n be a semi-
algebraic set of degree B. Let
Vol(S) < ϵn for some ϵ > 0. S
can be covered by BC(ϵ)1−n ϵ-
balls.

Recall: V is analytic, hence V is
well approximated by polynomials

0 1

1

x2 + y2 − .49 < 0
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Connection to Quantum Dynamics

Definition 4.1: Eigenvalues

Let A ∈ Mn×n(R). An eigenvalue- eigenvector pair are λ ∈ C, x ∈ Rn

which satisfy:

Ax = λx

Alternatively, λ ∈ C is an eigenvalue iff

(A− λIn)
−1 does not exist

Hψ = Eψ

Approximate H with finite dimensional HN .

Bradshaw, de Jong, Wang Texas A&M University 41 / 53



Connection to Quantum Dynamics

Definition 4.2: Eigenvalues

Let A ∈ Mn×n(R). An eigenvalue- eigenvector pair are λ ∈ C, x ∈ Rn

which satisfy:

Ax = λx

Alternatively, λ ∈ C is an eigenvalue iff

(A− λIn)
−1 does not exist

Hψ = Eψ

Approximate H with finite dimensional HN .
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Connection to Quantum Dynamics

Define GN (z; θ) := (HN (θ)− zIN )−1. Called the Green’s Function of H.

Since V is analytic, approximate with high-degree polynomial.

Points where GN doesn’t exist are contained in Semi-Algebraic Set (Denote
ΘN ).

Theorem 4.3: [HZ22] Large Deviation Estimates

Leb
{
θ ∈ [0, 1)d : det(HN (θ)− zI) < e−N1/2

}
≤ e−N1/4

Theorem 4.4: Counting Estimates

#{|n| ≤ N : θ + nα ∈ ΘN} is o(N−1)
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Main Theorems

Theorem 4.5

If α satisfies

∥mα∥ > e−(log |m|)γ (13)

Then,

⟨|X|pϕ⟩(t) ≲ ep(log log t)c (14)
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Main Theorems

Theorem 4.6

If α satisfies

∥mα∥ > e−|m|γ (15)

Then,

⟨|X|pϕ⟩(t) ≲ ep(log t)c (16)
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Proof of Theorem

Proof.

Lemma 4.7

Let z = E+ i
t . Assume that α is Liouvillian. Then for any j with |j| ≤M ,

|G(j, n)| ≲ t4e−
c
20 |I|

Define

a(j, n, t) =
2

t

∫ ∞

0

e2τ/t|(e−iτHδj , δn)|2 dτ

Hence,

⟨|X|pϕ⟩ =
∑
n∈Z

∑
|j|≤M

|n|pa(j, n, t)
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Proof of Theorem

Proof.
By Parseval’s Identity,

a(j, n, t) =
1

πt

∫
R
|G(z)(j, n)|2dz.

Combes-Thomas Estimate, and the previous Lemma, we may estimate

a(j, n, t) ≤ t7e−2c(log(N))C

By definition

⟨|XH |pϕ⟩(t) =
( ∑

|n|⩽R

+
∑

|n|>R

) ∑
|j|⩽M

|n|pa(j, n, t)

By construction

⟨|XH |pϕ⟩(t) ≲ Rp +
∑

|n|>R

∑
|j|≤M

|n|pa(j, n, t)
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Proof of Theorem

Proof.

Choose R = e(log T )c

Hence,

⟨|XH |pϕ⟩(t) ≲ ep(log T )c

Using this methodology, we may extend to general case (up to choice of R).
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Conclusion

1 Quasi-Periodic Schrödinger Operators are fundamentally unique.

2 Summary of Tools used to find upper bounds.
1 Discrepancy
2 Semi-Algebraic Geometry
3 Spectral Theory

3 Derived upper bounds show range of growth rates.
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Open Problems

1 Lower Bounds

2 Does there exist an α such that ⟨|X|pϕ⟩ ∼ T p/2?
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Thank You!
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