Applications of Liouville Discrepancy to Quantum Dynamics

Matthew Bradshaw, Titus de Jong, Audrey Wang

REU in Semi-Algebraic Geometry in Schrödinger Equations.

July 17, 2025

Section 1

- 1 Quantum Dynamics
 - Transport
 - Quasi-Periodic Potentials
- 2 Discrepancy Estimates of Kronecker Sequences
 - Examples of Discrepancy
 - Bounds
- 3 Semi-Algebraic Sets
- 4 Application to Quantum Dynamics

 \bullet The dynamics of a quantum particle are described by a complex-valued wavefunction, ψ

- \bullet The dynamics of a quantum particle are described by a complex-valued wavefunction, ψ
- Time evolution is governed by the Schrödinger equation

$$i\frac{\partial \psi}{\partial t} = \frac{\partial^2 \psi}{\partial x^2} + V(x)\psi(x)$$

- \bullet The dynamics of a quantum particle are described by a complex-valued wavefunction, ψ
- Time evolution is governed by the Schrödinger equation

$$i\frac{\partial \psi}{\partial t} = \frac{\partial^2 \psi}{\partial x^2} + V(x)\psi(x)$$

• This can be spatially discretized (eg. for a crystal lattice, numerical simulation), to obtain

$$i\frac{\partial \psi_n}{\partial t} = (\psi_{n+1} - 2\psi_n + \psi_{n-1}) + V_n\psi_n$$

where now ψ, V are sequences

Definition 1.1: Schrödinger operator

A Schrödinger operator $H:\ell^2(\mathbb{Z})\to\ell^2(\mathbb{Z})$ acts on a wavefunction $\psi:\mathbb{Z}\to\mathbb{C}$ according to

$$(H\psi)_n = \psi_{n+1} + \psi_{n-1} + V_n \psi_n, \tag{1}$$

where $V: \mathbb{Z} \to \mathbb{R}$ is the *potential*

Definition 1.1: Schrödinger operator

A Schrödinger operator $H:\ell^2(\mathbb{Z})\to\ell^2(\mathbb{Z})$ acts on a wavefunction $\psi:\mathbb{Z}\to\mathbb{C}$ according to

$$(H\psi)_n = \psi_{n+1} + \psi_{n-1} + V_n \psi_n, \tag{1}$$

where $V: \mathbb{Z} \to \mathbb{R}$ is the *potential*

- Comes from discretizing the 1D Hamiltonian operator: $\frac{\partial^2}{\partial x^2} + V(x)$.
- Our goal is to study $\psi(n,t)$ given by

$$i\frac{\partial\psi}{\partial t} = H\psi. \tag{2}$$

Definition 1.1: Schrödinger operator

A Schrödinger operator $H:\ell^2(\mathbb{Z})\to\ell^2(\mathbb{Z})$ acts on a wavefunction $\psi:\mathbb{Z}\to\mathbb{C}$ according to

$$(H\psi)_n = \psi_{n+1} + \psi_{n-1} + V_n \psi_n, \tag{1}$$

where $V: \mathbb{Z} \to \mathbb{R}$ is the *potential*

- Comes from discretizing the 1D Hamiltonian operator: $\frac{\partial^2}{\partial x^2} + V(x)$.
- Our goal is to study $\psi(n,t)$ given by

$$i\frac{\partial \psi}{\partial t} = H\psi. \tag{2}$$

• Given $\psi(0) = \phi$, this has the exact solution $\psi(t) = e^{-itH}\phi$.

Definition 1.1: Schrödinger operator

A Schrödinger operator $H:\ell^2(\mathbb{Z})\to\ell^2(\mathbb{Z})$ acts on a wavefunction $\psi:\mathbb{Z}\to\mathbb{C}$ according to

$$(H\psi)_n = \psi_{n+1} + \psi_{n-1} + V_n \psi_n, \tag{1}$$

where $V: \mathbb{Z} \to \mathbb{R}$ is the *potential*

- Comes from discretizing the 1D Hamiltonian operator: $\frac{\partial^2}{\partial x^2} + V(x)$.
- Our goal is to study $\psi(n,t)$ given by

$$i\frac{\partial \psi}{\partial t} = H\psi. \tag{2}$$

- Given $\psi(0) = \phi$, this has the exact solution $\psi(t) = e^{-itH}\phi$.
- $|\psi_n|^2$ represents the probability of measurement at site n.

A Schrödinger operator can be expressed as an infinte matrix

$$H = \begin{pmatrix} \cdot & \cdot & & & & & & \\ & V_{-2} & 1 & 0 & 0 & 0 & \\ & 1 & V_{-1} & 1 & 0 & 0 & \\ & 0 & 1 & V_0 & 1 & 0 & \\ & 0 & 0 & 1 & V_1 & 1 & \\ & 0 & 0 & 0 & 1 & V_2 & \\ & & & & & \ddots \end{pmatrix}$$

A Schrödinger operator can be expressed as an infinte matrix

$$H = \begin{pmatrix} \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & V_{-2} & 1 & 0 & 0 & 0 & \cdot \\ & 1 & V_{-1} & 1 & 0 & 0 & \cdot \\ & 0 & 1 & V_0 & 1 & 0 & \cdot \\ & 0 & 0 & 1 & V_1 & 1 & \cdot \\ & 0 & 0 & 0 & 1 & V_2 & \cdot & \cdot \end{pmatrix}$$

We can consider its restriction to a finite interval, eg. [0,3]:

$$H_{[0,3]} = \begin{pmatrix} V_0 & 1 & 0 & 0 \\ 1 & V_1 & 1 & 0 \\ 0 & 1 & V_2 & 1 \\ 0 & 0 & 1 & V_3 \end{pmatrix}$$

$$\phi_n = e^{-n^2/2} \qquad V_n = 0$$

$$\phi_n = e^{-n^2/2} \qquad V_n = 0$$

Insert diffusion example

$$\phi_n = e^{ni - (n+\mu)^2/2} + e^{-ni - (n-\mu)^2/2}$$
 $V_n = 0$

$$\phi_n = e^{ni - (n+\mu)^2/2} + e^{-ni - (n-\mu)^2/2}$$
 $V_n = 0$

Insert interference example

$$\phi_n = e^{ni - (n + \mu)^2/2}$$
 $V_n = \begin{cases} 1, & 140 \le n \le 150 \\ 0, & \text{otherwise} \end{cases}$

$$\phi_n = e^{ni - (n + \mu)^2/2} \qquad V_n = \begin{cases} 1, & 140 \le n \le 150 \\ 0, & \text{otherwise} \end{cases}$$

Insert reflection example

Quantum Dynamics - Transport

Definition 1.2: p^{th} moment

For an initial state ϕ , we define the pth moment as:

$$\langle |X_H|_\phi^p \rangle(t) = \sum_{n \in \mathbb{Z}} |n|^p |\psi_n(\tau)|^2$$

Then, we define the average pth moment as:

$$\langle |\tilde{X}_H|_\phi^p \rangle(t) = \frac{2}{t} \int_0^\infty e^{2\tau/t} \sum_{n \in \mathbb{Z}} |n|^p |\psi_n(\tau)|^2 d\tau$$

ullet Captures how $\psi(t)=e^{-itH}\phi$ spreads out over time

Transport - Example 1

If V is periodic, the $p^{\rm th}$ moment grows like

$$\langle X_H|_{\phi}^p \rangle \sim t^p$$

This is known as ballistic transport [Fil20].

Transport - Example 1

If V is periodic, the $p^{\rm th}$ moment grows like

$$\langle X_H|_{\phi}^p \rangle \sim t^p$$

This is known as ballistic transport [Fil20].

Insert periodic transport example

Transport - Example 2

If V is random, the p^{th} moment is bounded:

$$\langle X_H|_\phi^p
angle \leq C \quad ext{ for some } C > 0$$

This is known as dynamic localization [Klein].

Insert random transport example

Penrose Tilings

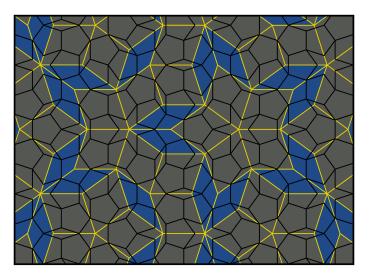


Figure: Image By Inductiveload - Own work, Public Domain, Link

The Fibonacci Hamiltonian

Consider a sequence S_N of words where $S_0=0$ and S_N is defined as the N-th application of the substitution rule

$$0\mapsto 01 \quad \text{ and } \quad 1\mapsto 0$$

Taking the limit as $N \to \infty$, one obtains the Fibonacci Word (Hamiltonian) Eg.

$$0100101001001 \cdots$$

Well studied model of Quasi-Crystals.

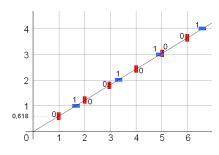


Figure: Line of Slope $\frac{1}{\phi}$. By Prokofiev - Own work, CC BY-SA 3.0, Link

Quasi-Periodic Potentials

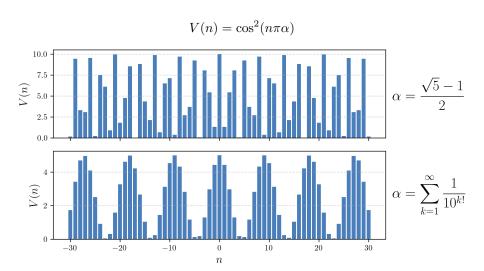
Definition 1.3: Quasi-periodic

If $f:\mathbb{R}\to\mathbb{R}$ is a periodic, analytic function, and if α is an irrational number, we call

$$V(n) = f(n\alpha)$$

a quasi-periodic potential.

Quasi-Periodic Potentials



Fact 1.5: Contined fraction expansion

Every positive real number can be expressed as a continued fraction of the form

$$\alpha = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \dots}}$$

Fact 1.6: Contined fraction expansion

Every positive real number can be expressed as a continued fraction of the form

$$\alpha = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \dots}}$$

for $a_i \in \mathbb{N}$, and we write $\alpha = [a_0; a_1, a_2, \dots]$.

ullet Rational lpha have finite expansions

Fact 1.7: Contined fraction expansion

Every positive real number can be expressed as a continued fraction of the form

$$\alpha = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \dots}}$$

- Rational α have finite expansions
- Irrational α have infinite expansions

Fact 1.8: Contined fraction expansion

Every positive real number can be expressed as a continued fraction of the form

$$\alpha = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \dots}}$$

- ullet Rational α have finite expansions
- ullet Irrational lpha have infinite expansions
 - Terminating expansion gives the best rational approximation

Fact 1.9: Contined fraction expansion

Every positive real number can be expressed as a continued fraction of the form

$$\alpha = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \dots}}$$

- Rational α have finite expansions
- Irrational α have infinite expansions
 - Terminating expansion gives the best rational approximation
 - Growth rate of a_i determines how closely approximated by rationals α is.

Fact 1.10: Contined fraction expansion

Every positive real number can be expressed as a continued fraction of the form

$$\alpha = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \dots}}$$

- ullet Rational α have finite expansions
- ullet Irrational lpha have infinite expansions
 - Terminating expansion gives the best rational approximation
 - ullet Growth rate of a_i determines how closely approximated by rationals lpha is.

$$\frac{\sqrt{5}+1}{2} = [1; 1, 1, 1, \dots] \qquad \sum_{k=1}^{\infty} \frac{1}{10^{k!}} = [0; 9, 11, 99, 1, 10, 9, 99999999999, 1, \dots]$$

Diophantine Conditions

Consider what happens when we plot the sequence $e^{2\pi i n \alpha}$ for rational α :

Consider what happens when we plot the sequence $e^{2\pi i n \alpha}$ for rational α :

Rational animation

$$\alpha = \frac{3}{11}$$

$$x_n = e^{2\pi i n\alpha}$$

 ϕ animation

$$\alpha = \frac{\sqrt{5} + 1}{2}$$

Liouville animation

$$\alpha = \sum_{n=1}^{\infty} \frac{1}{10^{k!}}$$

Definition 1.7: Diophantine

We call $\alpha \in \mathbb{R}$ diophantine if there is some $\gamma > 0, \tau \geq 1$ such that for all $m \in \mathbb{Z}$.

$$||m\alpha|| := \operatorname{dist}(m\alpha, \mathbb{Z}) \ge \frac{\gamma}{|m|^{\tau}}$$

We call these poorly approximable by rationals, or colloquially, "more irrational"

Definition 1.7: Diophantine

We call $\alpha \in \mathbb{R}$ diophantine if there is some $\gamma > 0, \tau \geq 1$ such that for all $m \in \mathbb{Z}$,

$$||m\alpha|| := \operatorname{dist}(m\alpha, \mathbb{Z}) \ge \frac{\gamma}{|m|^{\tau}}$$

We call these poorly approximable by rationals, or colloquially, "more irrational"

Definition 1.8: Liouville

We call $m \in \mathbb{R}$ Liouville if, for all $\gamma > 0, \tau > 1$, there are infintely many $m \in \mathbb{Z}$ for which

$$||m\alpha|| < \frac{\gamma}{|m|^{\tau}}$$

We call these too well approximable by rationals, or colloquially, "less irrational"

Transport - Example 3

f $lpha$ is diophantine, the transport is similar to the random case [BG00]	
Insert diophantine transport example	

Transport - Example 4

If α is Liouville, the	e transport is similar to the periodic case	
	Insert Liouville transport example	

$$||m\alpha|| \ge \frac{1}{|m|^{\gamma}} \implies \langle X_H|_{\phi}^p \rangle \le (\log t)^{pc}$$

$$||m\alpha|| \ge \frac{1}{|m|^{\gamma}} \implies \langle X_H|_{\phi}^p \rangle \le (\log t)^{pc}$$

$$||m\alpha|| \ge e^{-\kappa(\log|n|)^{\gamma}} \implies \langle X_H|_{\phi}^p \rangle \le e^{p(\log\log t)^c}$$

$$||m\alpha|| \ge \frac{1}{|m|^{\gamma}} \implies \langle X_H|_{\phi}^p \rangle \le (\log t)^{pc}$$

$$||m\alpha|| \ge e^{-\kappa(\log|n|)^{\gamma}} \implies \langle X_H|_{\phi}^p \rangle \le e^{p(\log\log t)^c}$$

$$||m\alpha|| \ge e^{-\kappa |n|^{\gamma}} \implies \langle X_H|_{\phi}^p \rangle \le e^{p(\log t)^c}$$

Section 2

- Quantum Dynamics
 - Transport
 - Quasi-Periodic Potentials
- 2 Discrepancy Estimates of Kronecker Sequences
 - Examples of Discrepancy
 - Bounds
- 3 Semi-Algebraic Sets
- 4 Application to Quantum Dynamics

Definitions

Definition 2.1: Discrepancy

Let $\{\mathbf{x}_n\}_{n\in\mathbb{N}}$ be a sequence in $[0,1)^d$. Define $P_N=\{\mathbf{x}_1,\mathbf{x}_2,...,\mathbf{x}_N\}$ then define the **Discrepancy** of P_N as

$$D_N(P_N) = \sup_{I \subset [0,1)^d} \left| \frac{1}{N} \sum_{n=1}^N \chi_I(x_n) - \text{Vol}(I) \right|$$
 (3)

Where I is an axis-aligned rectangle.

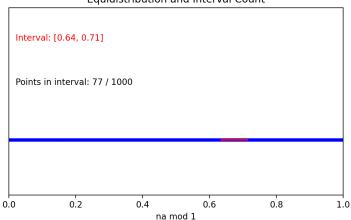
Definition 2.2: Kronecker Sequence

Let $\alpha = (\alpha_1, \alpha_2, ..., \alpha_d) \in \mathbb{R}^d$. The Kronecker Sequence $\{\mathbf{x}_n\}_{n \in \mathbb{N}}$ of α is defined via the relation:

$$\mathbf{x}_n := n\boldsymbol{\alpha} \pmod{\mathbb{Z}^d}$$
 (4)

Example 1 in \mathbb{R}

Equidistribution and Interval Count



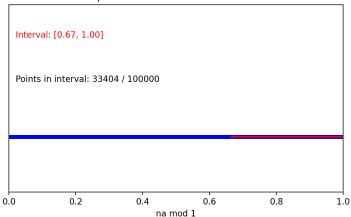
$$a=\sqrt{2}$$

Expected: $(0.71 - 0.64) \cdot 1000 = 70$

Discrepancy: $\frac{77-70}{1000} = 0.007$

Example 2 in \mathbb{R}

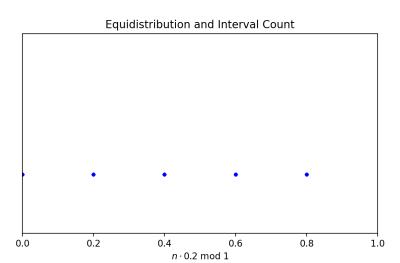
Equidistribution and Interval Count



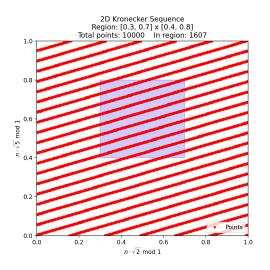
$$\mathsf{a}=\sqrt{2}$$

Expected: $(1-0.67)\cdot 100000 = 33000$ Discrepancy: $\frac{33404-33000}{100000} = 0.00404$

Example 3 in \mathbb{R}



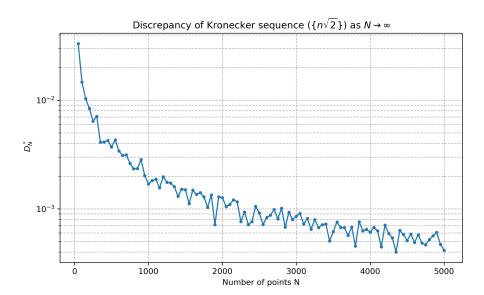
Example 4 in \mathbb{R}^2



Expected: $((0.7-0.3)\cdot(0.8-0.4))\cdot10000=1600$

Discrepancy: $\frac{1607-1600}{10000} = 0.0007$

Discrepancy as $N \to \infty$



Behavior of Discrepancy

Theorem 2.3: Denseness of Kronecker Sequences

Let $\alpha=(\alpha_1,\alpha_2,...,\alpha_d)\in\mathbb{R}^d$ Then the Kronecker sequence $\{n\alpha\}_{n\in\mathbb{N}}$ is dense in the unit torus $[0,1)^d$ iff $\{1,\alpha_1,...,\alpha_d\}$ is linearly independent over the integers. We henceforth call this condition **rationally independent**.

- Hence, $D_N(\{n\alpha\}) \to 0$ as $N \to \infty$ if and only if α is rationally independent.
- Interested in leading order approximation of \mathcal{D}_N (logarithmic, exponential, polynomial?)
- ullet Heavily depends on whether lpha is Diophantine or Liouville.

Previous Results

Theorem ([DT97])

Suppose $oldsymbol{lpha} \in \mathbb{R}^d$ satisfies

$$\|\boldsymbol{m}\boldsymbol{\alpha}\| = \operatorname{dist}(\boldsymbol{m} \cdot \boldsymbol{\alpha}, \mathbb{Z}) \gtrsim \frac{\gamma}{|\mathbf{m}|^a}$$
 (5)

for all $\mathbf{m} \in \mathbb{Z}^d$ for some $a \geq 1, \gamma > 0$. Then for some $\delta, C > 0$

$$D_N(\{\mathbf{x}_n\}) \le CN^{-\delta} \tag{6}$$

Our Results

Theorem

Suppose $\alpha \in \mathbb{R}^d$ is such that for some $\gamma, C > 0$

$$\|\boldsymbol{m}\boldsymbol{\alpha}\| \gtrsim e^{-C|\mathbf{m}|^{\gamma}} \tag{7}$$

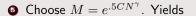
for all $\mathbf{m} \in \mathbb{Z}^d$ and for some $\gamma, C > 0$. Then for some $C_1 > 0$

$$D_N(\{\mathbf{x}_n\}) \le C_1(\log N)^{-1/\gamma} \tag{8}$$

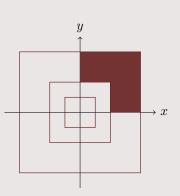
Proof.

- Partition \mathbb{Z}^d as in figure.
- Bound each partition, and count the number within each partition.
- Apply to Erdős-Turan inequality
- Summing values together yields:

$$D_N \lesssim \frac{1}{M} + \frac{1}{N} + \frac{e^{(C(M-1)^{d\gamma})}(M-1)^d}{2N}$$



$$D_N \le C_1 (\log N)^{-1/\gamma}$$



Our Results

Theorem

Suppose $\alpha \in \mathbb{R}^d$ is such that for some $\gamma, C > 0$

$$\|\boldsymbol{m}\boldsymbol{\alpha}\| \gtrsim e^{-C(\log|\mathbf{m}|)^{\gamma}}$$
 (9)

for all $\mathbf{m} \in \mathbb{Z}^d$. Then for some $\delta, C > 0$

$$D_N(\{\mathbf{x}_n\}) \le \begin{cases} Ce^{-(\log N)^{1/\gamma}} & \gamma \ge 1\\ CN^{-\delta} & \gamma < 1 \end{cases}$$
 (10)

Counting using Discrepancy

Recall

$$D_N(P_N) = \sup_{I \subset [0,1)^d} \left| \frac{1}{N} \sum_{n=1}^N \chi_I(n\alpha) - \operatorname{Vol}(I) \right|$$
 (11)

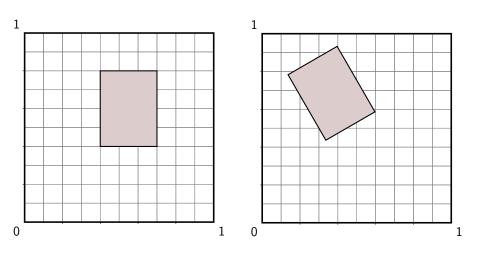
Hence, for a given rectangle

$$\sum_{I=1}^{N} \chi_{I}(n\alpha) \le N(D_{N} - \operatorname{Vol}(I))$$
(12)

Section 3

- Quantum Dynamics
 - Transport
 - Quasi-Periodic Potentials
- 2 Discrepancy Estimates of Kronecker Sequences
 - Examples of Discrepancy
 - Bounds
- 3 Semi-Algebraic Sets
- 4 Application to Quantum Dynamics

Expansion to Semi-Algebraic Sets

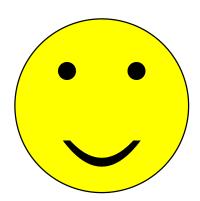


Semi-Algebraic Sets

Smiley Face with Semi-Algebraic Regions

Definition 3.1: Semi-Algebraic Sets

A set S is **semi-algebraic** if it is a finite union of polynomial inequalities and equalities.



Head:
$$x^2 + y^2 \le 1$$

Left eye:
$$(x+0.4)^2 + (y-0.4)^2 \le 0.01$$

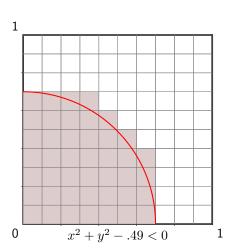
Right eye:
$$(x-0.4)^2 + (y-0.4)^2 \le 0.01$$

Smile:
$$1.5x^2 - 0.7 < y < 1.5x^2 - 0.6$$
, $|x| < 0.5$

Expansion to Semi-Algebraic Sets

Theorem 3.2: [Bou05]

Let $S \subseteq [0,1)^n$ be a semialgebraic set of degree B. Let $Vol(S) < \epsilon^n \text{ for some } \epsilon > 0. \mathcal{S}$ can be covered by $B^C(\epsilon)^{1-n}$ ϵ balls.

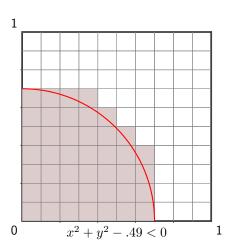


Expansion to Semi-Algebraic Sets

Theorem 3.3: [Bou05]

Let $S \subseteq [0,1)^n$ be a semialgebraic set of degree B. Let $Vol(S) < \epsilon^n$ for some $\epsilon > 0$. Scan be covered by $B^C(\epsilon)^{1-n}$ ϵ balls.

• Recall: V is analytic, hence V is well approximated by polynomials



Section 4

- Quantum Dynamics
 - Transport
 - Quasi-Periodic Potentials
- 2 Discrepancy Estimates of Kronecker Sequences
 - Examples of Discrepancy
 - Bounds
- 3 Semi-Algebraic Sets
- 4 Application to Quantum Dynamics

Connection to Quantum Dynamics

Definition 4.1: Eigenvalues

Let $A \in M_{n \times n}(\mathbb{R})$. An eigenvalue- eigenvector pair are $\lambda \in \mathbb{C}$, $x \in \mathbb{R}^n$ which satisfy:

$$Ax = \lambda x$$

Alternatively, $\lambda \in \mathbb{C}$ is an eigenvalue iff

$$(A - \lambda I_n)^{-1}$$
 does not exist

Connection to Quantum Dynamics

Definition 4.2: Eigenvalues

Let $A \in M_{n \times n}(\mathbb{R})$. An eigenvalue- eigenvector pair are $\lambda \in \mathbb{C}$, $x \in \mathbb{R}^n$ which satisfy:

$$Ax = \lambda x$$

Alternatively, $\lambda \in \mathbb{C}$ is an eigenvalue iff

$$(A - \lambda I_n)^{-1}$$
 does not exist

- $H\psi = E\psi$
- Approximate H with finite dimensional H_N .

Connection to Quantum Dynamics

- Define $G_N(z;\theta) := (H_N(\theta) zI_N)^{-1}$. Called the **Green's Function** of H.
- ullet Since V is analytic, approximate with high-degree polynomial.
- Points where G_N doesn't exist are contained in Semi-Algebraic Set (Denote Θ_N).

Theorem 4.3: [HZ22] Large Deviation Estimates

Leb
$$\left\{ \theta \in [0,1)^d : \det(H_N(\theta) - zI) < e^{-N^{1/2}} \right\} \le e^{-N^{1/4}}$$

Theorem 4.4: Counting Estimates

$$\#\{|n| \le N : \theta + n\alpha \in \Theta_N\}$$
 is $o(N^{-1})$

Main Theorems

Theorem 4.5

If α satisfies

$$\|\boldsymbol{m}\boldsymbol{\alpha}\| > e^{-(\log|\mathbf{m}|)^{\gamma}} \tag{13}$$

Then,

$$\langle |X|_{\phi}^{p} \rangle(t) \lesssim e^{p(\log \log t)^{c}}$$
 (14)

Main Theorems

Theorem 4.6

If lpha satisfies

$$\|\boldsymbol{m}\boldsymbol{\alpha}\| > e^{-|\mathbf{m}|^{\gamma}} \tag{15}$$

Then,

$$\langle |X|_{\phi}^{p} \rangle(t) \lesssim e^{p(\log t)^{c}}$$
 (16)

Proof.

Lemma 4.7

Let $z=E+\frac{i}{t}$. Assume that α is Liouvillian. Then for any j with $|j|\leq M$,

$$|G(j,n)| \lesssim t^4 e^{-\frac{c}{20}|I|}$$

Define

$$a(j,n,t) = \frac{2}{t} \int_0^\infty e^{2\tau/t} |(e^{-i\tau H} \delta_j, \delta_n)|^2 d\tau$$

• Hence,

$$\langle |X|_{\phi}^{p} \rangle = \sum_{n \in \mathbb{Z}} \sum_{|j| \le M} |n|^{p} a(j, n, t)$$

Proof.

• By Parseval's Identity,

$$a(j,n,t) = \frac{1}{\pi t} \int_{\mathbb{R}} |G(z)(j,n)|^2 dz.$$

• Combes-Thomas Estimate, and the previous Lemma, we may estimate

$$a(j, n, t) \le t^7 e^{-2c(\log(N))^C}$$

By definition

$$\langle |X_H|_{\phi}^p \rangle(t) = \left(\sum_{|n| \leqslant R} + \sum_{|n| > R}\right) \sum_{|j| \leqslant M} |n|^p a(j, n, t)$$

• By construction

$$\langle |X_H|_{\phi}^p \rangle(t) \lesssim R^p + \sum_{|n|>R} \sum_{|j|< M} |n|^p a(j, n, t)$$

Proof.

- Choose $R = e^{(\log T)^c}$
- Hence,

$$\langle |X_H|_{\phi}^p \rangle(t) \lesssim e^{p(\log T)^c}$$

ullet Using this methodology, we may extend to general case (up to choice of R).

Conclusion

- Quasi-Periodic Schrödinger Operators are fundamentally unique.
- Summary of Tools used to find upper bounds.
 - Discrepancy
 - Semi-Algebraic Geometry
 - Spectral Theory
- Oerived upper bounds show range of growth rates.

Open Problems

- Lower Bounds
- ② Does there exist an α such that $\langle |X|_{\phi}^{p} \rangle \sim T^{p/2}$?

Acknowledgments

This work is carried out at the *Texas A&M Mathematics REU 2025* under the thematic program *Semi-Algebraic Geometry in Schrödinger Equations* funded by the NSF REU site grant DMS-2150094.

Part of this work was completed during the *2025 Texas Summer School in Mathematical Physics* sponsored by the NSF grants DMS-2052572, DMS-2246031, and DMS-2513006. The presenters thank Jake Fillman, Wencai Liu and Xin Liu for organizing the event.

The presenters thank Wencai Liu, Xueyin Wang, and Bingheng Yang for their mentorship throughout the REU.

Bibliography I

- [DT97] M. Drmota and R.F. Tichy. Sequences, discrepancies and applications. Vol. 1651. Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1997, pp. xiv+503. ISBN: 3-540-62606-9. DOI: 10.1007/BFb0093404. URL: https://doi.org/10.1007/BFb0093404.
- [BG00] Jean Bourgain and Michael Goldstein. *On nonperturbative localization with quasi-periodic potential*. 2000. arXiv: math-ph/0011053 [math-ph]. URL: https://arxiv.org/abs/math-ph/0011053.
- [Bou05] J. Bourgain. Green's function estimates for lattice Schrödinger operators and applications. Vol. 158. Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2005, pp. x+173. ISBN: 0-691-12098-6. DOI: 10.1515/9781400837144. URL: https://doi.org/10.1515/9781400837144.
- [Fil20] Jake Fillman. Ballistic Transport for Periodic Jacobi Operators on \mathbb{Z}^d . 2020. arXiv: 2011.11522 [math.SP]. URL: https://arxiv.org/abs/2011.11522.

Bibliography II

[HZ22] R. Han and S. Zhang. "Large deviation estimates and Hölder regularity of the Lyapunov exponents for quasi-periodic Schrödinger cocycles". In: *Int. Math. Res. Not. IMRN* 3 (2022), pp. 1666–1713. ISSN: 1073-7928,1687-0247. DOI: 10.1093/imrn/rnz319. URL: https://doi.org/10.1093/imrn/rnz319.

Thank You!