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Abstract

How do cells decide between survival and self-destruction? This project explores
that question using a mathematical model of apoptosis, the programmed cell death
pathway. We use the 8-dimensional caspase network introduced by Eissing et al. and
symbolically reduce it to a 2D model centered on Caspase-3 and Caspase-8 dynamics.
This reduced system preserves key bistable features and enables efficient and accurate
simulation, nullcline analysis, and steady-state classification. We also explore a further
simplification to a 1D model, but find that it produces biologically implausible results,
such as negative concentrations, and ultimately fails to capture the system’s switching
behavior. By performing parameter sweeps using our 2D model, we rank reactions
based on their bistability windows, revealing which rates are most sensitive to dis-
ruption. We identify distinct dynamic behaviors resulting from individual parameter
eliminations and find that only the inhibitory feedback associated with parameter £1;
can be removed without destroying bistability. These results demonstrate how mathe-
matical models can uncover the key mechanisms that govern biological decision-making,
and they lay the groundwork for future experimental validation.

1 Biological Background

1.1 Apoptosis and Caspase Signaling

Apoptosis, or programmed cell death, is the process by which organisms remove damaged
or unnecessary cells. It’s essential for development, immune function, and tissue health. If
apoptosis is blocked, cells may survive when they shouldn’t, which is a common feature in
cancer.

Caspase proteins play a central role in apoptosis. Caspase-8 (C8) activates Caspase-3
(C3), which commits the cell to death. This cascade is known to behave like a switch: once
activation starts, the process completes irreversibly.

These signaling events are not linear chains, they often involve feedback loops, inhibition,
and scaffold proteins that affect how sharply and reliably the decision is made. This makes



apoptosis an ideal candidate for mathematical modeling, where we can test whether such
features are sufficient to explain the irreversible “point of no return” observed experimentally.

We aim to understand this switch-like behavior using mathematical modeling. In par-
ticular, we study whether the caspase model shows bistability, where two different stable
outcomes are possible under the same conditions.

1.2 Biochemical Reaction Networks

To analyze apoptosis using mathematics, we follow the framework introduced by Eissing et
al. [I], who were among the first to model caspase signaling as a biochemical reaction network.
In this approach, molecular interactions are represented as chemical reactions governed by
rate laws, forming what is known as a biochemical reaction network (BRN), a modeling
strategy that uses species, reactions, and kinetics to simulate cellular behavior.

In a BRN, each reaction has a form:

A+ B
41

which is governed by mass-action kinetics, producing rate laws:

r1 = ki[A][B]
o = El[O]

This captures both the forward production of C from A and B, and its reverse conversion
back, with rates governed by k; and ¢, respectively. In modeling apoptosis, a BRN approach
allows us to represent interactions such as Caspase-8 activating Caspase-3, [APs inhibiting
active caspases, and scaffold complexes that affect apoptotic activation. We translate each
biological process into a reaction, and each reaction into an equation term, which creates a
system that captures the emergent behavior of the whole network.

Each of these rate laws contributes a term in a differential equation, leading to a system
of ODEs that describes the full time evolution of the species. One of the first such models of
apoptosis using this approach was developed by Eissing et al. [I], who constructed a mass-
action network capturing key caspase interactions and showed that it could exhibit bistable
behavior. These ODEs will appear later in this paper and form the basis of our model.
This modeling strategy allows us to analyze system-wide behavior including steady states,
feedback loops, and switch-like decisions using mathematical tools and simulations. In this
study, we extend the Eissing framework by applying symbolic reduction, nullcline analysis,
and parameter sensitivity techniques to uncover new insights into the system’s bistability.

2 Model Development

2.1 Caspase Activation Network

Our model, originally developed by Eissing et al. [1], consists of 8 molecular species and 13
reactions, encompassing activation, inhibition, binding, and feedback mechanisms. In this
study, we work with the fully extended version of their model, which includes all 8 species



and all 13 reactions, rather than a simplified core network. The complete set of species is
listed in Table [I, and a diagram of the full reaction network is shown in Figure [T with
species roles also detailed in the table.

Species (z;) Biological Role

1 Procaspase-8 (inactive)

o Active Caspase-8

x3 Procaspase-3 (inactive)

x4 Active Caspase-3 (executioner)

x5 Inhibitor of Apoptosis Protein (IAP)
Tg Caspase-3-TAP complex

T CARP scaffold complex

g Caspase-8*—CARP complex

Table 1: Species and their roles in the model.
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Figure 1: Reaction network for the extended caspase activation model.

Figure [1] illustrates several important structural features. At the top, reactions k; and ks
form a positive feedback loop between active Caspase-8 (z2) and active Caspase-3 (z4),
reinforcing their mutual activation. This feedback loop is central to bistable dynamics and
underlies the system’s potential for switch-like responses.
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The reverse reactions in Figure [I| are each controlled by a rate parameter ¢;. These
model reversible biological processes like dissociation or baseline production. Their inclusion
ensures the system can settle into stable and biologically meaningful outcomes.

Inhibition is implemented through complex formation: active Caspase-3 binds IAP to
form an inactive complex (xg), and Caspase-8 binds the CARP scaffold to form xg. These
interactions reduce the availability of active caspases, dampening the apoptotic response.

2.2 Mass-Action ODE System

dl’l
- = —kox1x4 — kox +£7
dt 24144 941 9
dx
d_t2 = kox1x4 — ksxo — k112277 + 611358»
dZL'3
dt 14243 1043 10
dx
d_t4 = k1x2x3 — k3$4$5 — k6$4 + £3x67
dx
d_; - _k3x4$5 - ]{74JJ4I5 - k8x5 + £3x6 + 68’
d
% = ksxyxs — krxg — U376,
dx
d_; = —]{3111’2{E7 — ]{312{E7 + gnl’g + 6127
d
—dxtg = k11$21]7 - k13$8 - 6111‘18'

[

These differential equations are derived directly from the mass-action reaction network shown
in Figure [Il They describe the time evolution of each species in the system based on the kinetic
rates of the reactions (k;and ;).

This system defines the extended caspase activation model originally proposed by Eissing
et al. [T]. The original model included a core subsystem of six species (x1—x¢) representing the main
apoptotic interactions between Caspase-8, Caspase-3, and IAPs. The extended version, used in our
study, adds two more species (z7 and zg), along with Reactions 11-13. These additions introduce
new regulatory mechanisms and feedback loops not present in the core model.

All simulations and analyses in this paper are based exclusively on the full 8-dimensional (8D)
extended model. This system serves as the foundation for all symbolic reductions, steady-state
classification, parameter sweeps, and elimination experiments described in the following sections.



3 Mathematical Analysis

3.1 Steady States in Dynamical Systems

A steady state of a dynamical system occurs when the concentration of every species remains
constant over time. Mathematically, this means that all time derivatives vanish:

dl‘i

T 0 for all z;.

In biological systems, steady states represent long-term outcomes such as survival or cell death.
Steady states can be classified based on their stability:

e Stable: If the system is slightly perturbed, it returns to the same steady state. These are
like “valleys” in an energy landscape.

e Unstable: If perturbed, the system diverges away from the steady state. These correspond
to “peaks” or saddle points.

This behavior is illustrated in Figure [2], where valleys represent stable configurations and peaks
represent unstable ones.

Stable Unstable

Valley Hill

Figure 2: Energy landscape interpretation of stability. Valleys correspond to stable steady states; peaks
represent unstable ones.

Understanding the number and stability of steady states is essential for detecting bistability:
the presence of two stable outcomes under the same parameter conditions. In our model, this
corresponds to a choice between survival and apoptosis.

3.2 Understanding Bistability and Feedback

A dynamical system is said to exhibit bistability if it has two or more stable steady states under
the same set of parameter values. This means the system can settle into either of two long-term
outcomes depending on its initial state or perturbations during its evolution. In biological contexts,
bistability underlies many irreversible decision-making processes such as cell fate commitment,
differentiation, and apoptosis.

Bistable systems typically contain an unstable steady state that separates the two basins of
attraction. This unstable point acts as a decision threshold: small changes near it can push the
system toward one stable state or the other. In many biological models, this intermediate state is a
saddle point, which is a type of unstable equilibrium that is stable in one direction and unstable
in another. While saddle points can attract trajectories along specific directions, they ultimately
cannot hold the system long-term, and thus are not stable outcomes. As a result, bistable systems



can function like biological switches, remaining stable in one configuration until a signal pushes
them over the threshold into a new state. This bistable switching behavior has been extensively
discussed in biological decision models, including apoptosis and differentiation mechanisms [2].

In our apoptotic model, the two stable steady states correspond to the biological outcomes
identified by Eissing et al. [1]:

e Survival: Low levels of active Caspase-3 (z4), representing no cell death
e Apoptosis: High levels of active Caspase-3, indicating irreversible execution

This switch-like behavior is illustrated in Figure (3| which shows two stable valleys (survival and
apoptosis) separated by a central unstable peak. The position of the unstable threshold depends
on initial caspase levels and key reaction parameters.

Switch

Living State Apoptotic State

Unstable

Stable Stable

Figure 3: Conceptual diagram of bistability. Two stable steady states (living, apoptotic) are separated by
an unstable threshold.

3.3 Waldherr et al. Sensitivity Analysis

To understand the system’s steady-state behavior and its ability to commit to cell death, we analyze
which species have the greatest influence on the network. Waldherr et al. (2007) performed a
parameter sensitivity analysis by computing normalized sensitivity coefficients, which measure how
much steady-state concentrations of each species respond to small changes in individual parameters.
Species were ranked by the overall magnitude of these sensitivities to identify which species and
reactions most strongly influence the system’s behavior.

The results are shown in the chart below, which visualizes each species’ relative importance in
driving the network dynamics.

The analysis identified four species as most influential:

e 19 — Active Caspase-8
e 1, — Active Caspase-3
e 13 — Caspase—3-IAP complex

e 13 — Caspase-8*-CARP complex
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Figure 4: Species sensitivity from [3], Figure 3 of their original publication.

Waldherr constructed the following reduced model using only the ODEs for the above species.
Reduced ODEs (4-variable system):

kokoxy (k12 + k1izg) k1122
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k1ok1x2 (ks + ksxe)ksxa

= k1o + k122 B (kg + k‘4)$4 + kg
(kg + k3$6)k3x4
= —k -k
6 (ks + kq)zg + kg 376 76

(k12 + k11wg)k11o
ki2 + k1122
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3.4 Two-Species Symbolic Reduction

To identify steady states of the system, we begin by setting all time derivatives @; = 0, trans-
forming the full 8-dimensional ODE system into a set of algebraic equations. Solving this system
symbolically is challenging due to its complexity. Following the strategy proposed by Waldherr et
al. [3], we analytically eliminate six of the eight species by expressing their steady-state concen-
trations in terms of just two variables: active Caspase-8 (z2) and active Caspase-3 (z4). These
two variables are chosen for their biological and mathematical importance, as they form the core
positive feedback loop (Reactions k; and k2) that drives apoptotic switching behavior.

To perform the reduction, we first solve the steady-state equations for the remaining species
1,3, X5, g, T7, T8, obtaining their symbolic expressions in terms of xo and z4. We then substitute
these into the original differential equations for o and 4, yielding a two-dimensional system.
The full symbolic expressions and source code used to generate this reduction are available in the
GitHub repository cited in [4].

The resulting reduced equations are:



_ —ki1kizliaxa(kaxs + ko) + koloxa(kr1kizma + kiokis + kiol11) — ksza(kaxs + ko) (k11kisza + ki2kiz + k12611)
(kowa + ko) (k11kiszo + ki2kis + k12611)

Z2

(klfl().’ﬂg — kgrs — k3k7€8x4)(k3k‘71‘4 + kakrrg + kalzxy + krks + kgeg)

= (k1o + k10) (kskrxs + kakras + kalszy + krkg + ksl3)

These expressions define a symbolic two-dimensional dynamical system that forms the founda-
tion for our nullcline plots, steady-state analysis, and bistability classification in subsequent sections.
Retaining the feedback loop between Caspase-8 and Caspase-3 allows the reduced model to capture
the essential nonlinear dynamics of the full 8D system while enabling symbolic simplification and
computational analysis.

4 Simulations and Results

To explore the behavior of the caspase activation model, we implemented simulations in Python.
Symbolic manipulations and reductions were performed using SymPy [5], while numerical evaluations
and plots were generated using NumPy [6] and Matplotlib [7]. This framework enabled us to
simulate nullclines, compute steady states, run parameter sweeps, and classify stability efficiently
and reproducibly. The following subsections walk through our key computational results, beginning
with how different parameter choices control monostability versus bistability. The full codebase is
available on GitHub [4].

4.1 Parameter Setup for Bistability

We use the parameter values from [3] as a baseline configuration for the reduced system. These
values were chosen by the authors of [3] to reflect biologically reasonable dynamics, but under this
setup, the system exhibits only monostable behavior as shown in Figure

Table 2: Parameter values (Col 2: Waldherr et al. [3], Col 3: Modified values).

Parameter | Waldherr et al. (2007) | Modified Set
k1 5.8.10~° 1.42-1077
ko 1.0-10—5 1.0-107°
k3 5.0-10"4 5.0-10%
k4 3.0-1074 3.0-10~4
ks 5.8-.1073 581073
ke 5.8.1073 5.8.10~3
kr 1.73-.1072 1.73-1072
ks 1.16 - 102 1.16 - 102
ko 3.9.103 3.9.1073
k1o 3.9.1073 3.9.1073
k11 5.0-10"4 5.0-10~%
k12 1.0-1073 1.0-1073
k13 1.16 - 102 1.16 - 102
l3 0.21 0.21
L3 464 464
2 507 507
Y10 81.9 81.9
2% 0.21 0.21
l12 540 440

To induce bistability, we made two minimal but impactful modifications: we increased ki,
the rate at which Caspase-8 activates Caspase-3, thereby strengthening the positive feedback loop.
Simultaneously, we decreased {12, which governs the reactivation of CARP, a downstream apoptotic



inhibitor. See Table 2] Together, these changes increase the strength of activation and reduce
inhibition, making bistable behavior possible in the caspase activation model.

4.2 Nullclines: Monostable vs Bistable Cases
We analyze the steady-state structure of the reduced 2D system by plotting its nullclines, which

are curves where @9 = 0 or 4 = 0.

e The @9 = 0 nullcline represents values where Caspase-8 (43) concentration is steady.
e The &4 = 0 nullcline represents values where Caspase-3 (44) concentration is steady.

e Intersections indicate steady states; stability is later classified via Jacobian analysis.

Using the full parameter set listed in Table [2] we simulate the system’s behavior under these
By plotting the nullclines of the reduced two-dimensional system, we

fixed kinetic conditions.
identify where the time derivatives &2 and &4 simultaneously vanish. These intersection points

represent steady states, which are potential long-term outcomes of the system that will later be
classified as stable or unstable. Under the original Waldherr et al. parameters, only one intersection

appears, indicating monostability. See Figure
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Figure 5: Nullcline plot under original parameters showing a single (monostable) steady state.

With the modified parameters, the nullclines intersect at three distinct points: two are stable,
and one is unstable. This confirms bistability in the reduced system (Figure @ To determine

the stability of each equilibrium state, our simulation framework includes automatic classification

based on Jacobian eigenvalue analysis, described in the following section.



Nullclines and Steady States (xz, xa)
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Figure 6: Nullcline plot with modified parameters showing two stable steady states separated by an unstable
one.

4.3 Steady State Verification (2D vs 8D)

FEach steady state corresponds to an intersection point of the nullclines 29 = 0 and @4 = 0 in the
reduced model. To classify the stability of each equilibrium, we analyze the local dynamics using
the Jacobian matrix:

Oy Oy

I ) 0
J(wa,wa) = | 585 05
8%2 83:4

We compute the eigenvalues A1, Ay of J at each nullcline intersection and classify the steady
states based on the sign of the real parts:

Re()\l), Re()\g) < 0:
Re(\) < 0 < Re(Ag):
Re()\l), Re(>\2) > 0:

Classification based on Jacobian eigenvalues [8].

Stable (attracts nearby trajectories)
Saddle (partially stable; repels in one direction)
Unstable (repels in all directions)

To ensure the reduced system accurately represents the full model, we also compute the Jacobian
matrix and corresponding eigenvalues of the original 8-dimensional system at the same steady-state
locations, the values of x9 and x4 obtained from the 2D nullcline intersections. The values of the
remaining six species (z1, x3, Ts, T¢, 7, ) are recovered by back-substituting those xo and x4 values
into the symbolic expressions derived during the reduction process. This allows us to reconstruct
the full 8D steady-state vector and evaluate whether the reduced system preserves the qualitative
dynamics of the complete model.
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Steady State 2D Eigenvalues 8D Real Parts Classification
Low (0, 0) A1 = —11.56, Ao = —1.49 All negative Stable
Middle (971.4, 2144.5) A1 = —0.037, A2 = 40.008 Mixed (1 positive) Saddle
High (5088.8, 4460.6) A1 = —0.0087, Ay = —0.0036 All negative Stable

Table 3: Eigenvalue-based classification of steady states from both reduced and full systems, corresponding
to the parameters and nullcline intersections shown in Figure @

These results confirm bistability under the modified parameter set and demonstrate that the
reduced symbolic model reliably mirrors the behavior of the full 8D system. If the classifications
had not matched, it would have indicated that the reduction failed to preserve key features of the
system and is not biologically accurate.

4.4 One-Species Reduction and Failure Analysis

To further simplify the model, we attempted a one-species reduction by eliminating all variables
except 4 (active Caspase-3). The goal was to derive a single symbolic equation @4 = f(z4) by
substituting all other variables at steady state.

To attempt a one-species reduction, we began with the two-dimensional reduced system involv-
ing o and ©4. By setting both derivatives equal to zero, we obtained a pair of algebraic steady-state
equations that describe the system’s behavior at equilibrium. We solved the steady-state equation
&9 = 0 to express xo as a function of x4, and substituted that expression into &4. This yielded a
single symbolic equation &4 = f(x4) in terms of Caspase-3 alone.

The resulting equation was highly nonlinear, containing rational functions, nested radicals, and
large symbolic terms in x4, k;, and /;:

_large polynomial in x4 and k;,¢;, including Vo n
4= rational denominator in x4

To identify steady states, we solved 4 = 0 numerically and plotted the resulting nullcline
(Figure . Due to the complexity of the function, this equation sometimes yielded one or two
roots, indicated as branches in the 1D phase plane plots.

Reduced 1D Phase Plane: x,(xs) (with X, = 0 constraint)
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Figure 7: One-species reduction fails to reproduce bistability. Only a single steady state is detected.
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Stability of each root was inferred from the slope of 4(z4) at the crossing point:
e Negative slope = stable steady state
e Positive slope = unstable steady state

However, to assess biological plausibility, we back-substituted these x4 values into the full model
to solve for the corresponding x2. In several cases, this yielded negative concentrations:

2o = —2908.97 (x4 = 2144.48)
29 = —603.54 (x4 = 4460.63)

These values are biologically implausible. The one-species model fails to preserve the cou-
pling between Caspase-8 (x2) and Caspase-3 (x4), making it unsuitable for studying bistability or
apoptotic commitment.

Conclusion: The one-species model cannot replicate bistability or yield biologically meaningful
steady states. At least two species must be retained for accurate and interpretable analysis.

4.5 Parameter Sweeps and Bifurcation Insights

To better understand the conditions that enable bistability in our model, we performed systematic
parameter sweeps. This approach involves varying one parameter at a time and examining how
the system’s steady states and their stability change as a result. The aim is to identify bifurcation
points: critical parameter values at which the number or nature of steady states shifts dramatically.

Bifurcations represent qualitative transitions in system behavior. For instance, a system may
move from monostability to bistability, or lose all steady states entirely. These transitions are
essential in biological systems that require sharp, switch-like decisions, such as the irreversible
commitment to apoptosis.

Parameter sweeps also help identify which reaction rates are most influential in maintaining
bistability. Following the approach of Albeck et al. [9], we analyzed how varying key parameters
shapes the underlying dynamics, especially feedback-driven behaviors involved in caspase regula-
tion.

Goal: Determine which reaction rates control the cell’s ability to make all-or-nothing life-or-
death decisions.

Bifurcation Diagram for k;

We first varied the parameter ki, which governs how efficiently active Caspase-8 activates Caspase-
3, while keeping all other parameters set to the modified parameter set in Table |2l This parameter
plays a crucial role in controlling the positive feedback loop responsible for switching the system
into an apoptotic state [1].

12



Parameter Scan: Bifurcation-style Diagram with Bistability Zones
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Figure 8: Bifurcation diagram showing steady-state x4 values as a function of k.

As shown in Figure [8] the system exhibits a bifurcation: for low ki, only a low steady-state
Caspase-3 level is possible (representing survival); as ki increases beyond a threshold, a high
Caspase-3 level emerges, signifying apoptosis. In the intermediate region, bistability is observed,
where both fates are possible depending on initial conditions.

Saddle points are a type of unstable steady state that act as thresholds between basins of
attraction. During a bifurcation, a saddle can merge with a previously stable steady state, causing
that point to become unstable. However, this change may not be visible in a bifurcation diagram.
For instance, in our bifurcation sweep of k1, the lower branch appears to remain stable across the
entire parameter range. But when we analyzed nullclines at representative kq values, we found that
in the high-k; regime, the lower steady state had actually become a saddle. The bifurcation plot
continued to display it in green due to trajectory behavior near (0,0), where simulations remained
trapped.

To distinguish true attractors from unstable saddles, we use nullcline intersections and local
eigenvalue classification. Full sweep results and nullcline plots for each parameter are provided in

Appendix [A]

Nullcline Plots at Representative k; Values

To visualize the bifurcation more concretely, we plotted the nullclines of the reduced model at three
representative ki values:

13



Zone 1: Low k; (Living Only) Zone 2: Middle k; (Bistable) Zone 3: High k; (Apoptosis Only)

Figure 9: Nullcline plots showing steady-state changes across low, middle, and high k; regimes.

While bifurcation diagrams show how steady-state values evolve as a parameter changes, null-
cline plots reveal the underlying mechanism of how the system’s stability shifts at each point along
that curve. By examining individual nullcline snapshots across the parameter sweep, shown in
Figure [8] we gain direct insight into the cell’s decision landscape. At low k1, the nullclines intersect
at a single stable point, corresponding to a living cell fate. At intermediate k1, three intersections
emerge: two stable (living and apoptotic) separated by an unstable saddle point, which clearly
indicates bistability. At high ki, only the high-z4 apoptotic attractor remains. These transitions
validate the bifurcation structure and illustrate how system dynamics change qualitatively across
regimes.

4.6 Key Parameters for the Apoptotic Switch

Bifurcation diagrams revealed how specific parameters, such as ki, govern whether the system
exhibits monostability or bistability. In each diagram, a range of values exists where the system
transitions from a single stable steady state to three steady states (two stable, one unstable) and
back again. We define this range as the bistability window. It represents the interval over which
the system supports switch-like behavior where initial conditions determine whether the cell lives
or undergoes apoptosis.

To quantify how sensitive each reaction is to this switch-like behavior, we computed the bistable
window for all parameters individually. A smaller window indicates high sensitivity: even minor
perturbations to the parameter value can destroy bistability. Conversely, a wider window suggests
robustness.

This analysis reveals that certain parameters, such as ({g), (k3), and (£12), exhibit very narrow
bistable ranges, meaning even slight changes can disrupt bistability. These act as fragile “switches”
in the apoptotic decision-making process. Contrarily, parameters like (k11), (k13), and (¢11) exhibit
broad bistable windows, suggesting the system is relatively insensitive to fluctuations in these
values. The bistable window widths, quantified in terms of logarithmic span and percentage of the
scanned range, are summarized in Table 4} Parameters are ordered from most to least sensitive.
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Parameter | Lower Bound | Upper Bound | Log-Width | % of Scan
19 4.98 x 107 8.70x 10° 0.24 2.0%
k3 8.11x10° 4.33x10~4 0.73 6.1%
112 7.05 % 101 3.76 x 102 0.73 6.1%
110 9.33x 101 4.98 x 102 0.73 6.1%
k4 3.27x10~4 2.31x103 0.85 7.1%
13 2.01x10~1 1.42 0.85 7.1%
k7 2.31x1073 1.63x1072 0.85 7.1%
18 7.05x 101 4.98 x 102 0.85 7.1%
k1 8.70x 106 1.42x10~4 1.21 10.1%
k9 2.48 x 104 4.04x10~3 1.22 10.2%
k10 3.27x 104 5.34x 103 1.22 10.2%
k2 8.70x 106 1.87x1074 1.33 11.1%
k6 3.27x10~4 7.05x1073 1.34 11.2%
k5 3.27x10~4 1.23x 102 1.58 13.2%
k12 1.00x10~7 2.85x102 5.45 45.4%
k8 1.00x10~7 4.64x 101 6.67 55.6%
111 1.00x10~7 5.72 7.76 64.7%
k13 4.33x10~4 1.00x 10° 8.36 69.7%
k11 2.01x10~° 1.00x 10° 9.70 80.8%

Table 4: Parameters with narrow bistable regions (e.g., k3, 19) act as key switches. Wide ranges (e.g., k11)
indicate robust tolerance.

4.7 Nullcline Parameter Zeroing Method

To deepen our analysis of the nullcline zeroing approach, we categorized the system’s stability
responses after knocking out each parameter individually. Table[f|summarizes the resulting nullcline
configurations and their biological implications.

Each parameter was set to zero and the nullclines o = 0 and 4 = 0 were recomputed. The
outcome types reflect the number and type of steady states preserved, and whether the switch-like
bistability was disrupted. The results indicate that most parameters are essential for maintaining
bistability. Knocking them out results in a loss of apoptosis, a collapse of survival, or even the
complete removal of any stable state. Only one parameter, ¢11, was found to be dispensable in that
bistable dynamics are preserved.

To further illustrate the dynamic effects of parameter elimination, Appendix A contains individ-
ual nullcline plots for each zeroed system. These visualizations show how the qualitative structure
of the phase portrait changes when bistability is lost. For instance, when k; = 0, the high apoptotic
state disappears and only a survival steady state remains; when kg9 = 0, the opposite occurs, with
only apoptosis remaining as an attractor. In cases such as ki1 or £13, the resulting nullclines do not
intersect in any biologically meaningful configuration, leaving the system without any stable state.
These outcomes visually confirm and enrich the classifications in Table |5 providing intuition for
how individual reactions shape the decision-making landscape of the apoptotic switch.
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Table 5: Effect of Parameter Elimination on Nullcline Structure and Bistability

Outcome Type Parameters Zeroed | Resulting Nullcline Behavior

Low stable only k1, ko, ka, £3, L9, 10 | Cell is trapped in survival; apoptosis
cannot occur

Low stable then sad- | ks, kg Cell is locked in survival; saddle is

dle non-functional

Low saddle then high | k3, k7, /3 Survival basin lost; unstable low re-

stable gion leads to apoptosis

Mid saddle then high | kg, k12 No survival state; flow from unstable

stable middle leads to apoptosis

High stable only ko, k10 Cell starts and ends in apoptosis; no
other dynamics exist

Low saddle only k11, k13, l13 No stable state; biologically implausi-
ble

Bistable 11 Switch retained; bistability preserved

Color Legend:

Green = Activation (Reactions 1-2)

Blue = Inhibition / Complex Formation (Reactions 3, 4, 11)
Red = Degradation (Reactions 5-10, 12, 13)

Gray = Reverse Reactions (¢ terms)

These results highlight the fragility of bistability in the apoptosis model and show how reaction
type plays a critical role. In Table [5, parameters are grouped and color-coded by their biological
function: activation, inhibition, degradation, or reversibility. The system is highly sensitive to the
removal of most parameters, with each group showing different modes of bistability disruption.
Activation parameters like k; and ko are essential for triggering apoptotic switching; removing
them collapses the system to survival-only states. Degradation terms such as kg and k1o cause the
opposite effect, locking the system in apoptosis. Inhibitory and complex-forming reactions lead
to unstable or biologically implausible behavior when removed. Only one reverse reaction, ¢11, is
dispensable without loss of bistability, revealing a minimal set of reactions required to preserve
switch-like dynamics.

5 Conclusions and Future Work

5.1 Summary of Findings

This project analyzed bistability in a model of apoptotic signaling, focusing on how it emerges from
the system’s reactions and parameter structure. Eissing et al. [1] previously showed that feedback
between caspases can create switch-like behavior in this network. Building on that foundation,
we used symbolic reductions, steady-state analysis, and parameter perturbations to identify which
reactions and rates are most important for generating and maintaining bistable outcomes.

Our parameter sweeps revealed that a small number of kinetic rates critically shape the range
over which bistability is maintained. Reactions involving f9 and ks exhibited narrow bistable
windows, where even modest changes destroyed switch-like behavior. In contrast, other rates such
as k11 and ki3 allowed for broader flexibility while preserving bistability. These findings build upon
Eissing’s original insights by quantifying how robustness varies across the reaction network.
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We further analyzed bistability by individually removing parameters from the model and plot-
ting nullclines of the reduced two-species system. In several cases, the system lost one or both
stable steady states: some deletions caused the system to converge solely to survival, while others
forced apoptosis. This analysis showed that while the full network supports robust switching, that
behavior depends on specific combinations of feedback and interaction terms and removing certain
parameters can completely abolish bistability.

We also tested symbolic model reductions to assess whether lower-dimensional representa-
tions could replicate the full model’s dynamics. A two-species reduction, retaining Caspase-8 and
Caspase-3, successfully preserved the system’s steady-state structure and stability under our mod-
ified set of parameter values. However, a one-species reduction failed to do so. In many cases, it
yielded negative concentrations for excluded variables, violating physical constraints and demon-
strating that the reduction eliminated critical interactions.

Altogether, our findings suggest that the apoptotic switch relies on a finely balanced network,
where multiple parameters and feedback interactions operate to show a clear separation between
survival and death outcomes. In many cases, a wide range of parameter values still permitted
bistable behavior, indicating a degree of tolerance within the system. At the same time, eliminating
or modifying specific reactions, such as key activation or degradation steps, was enough to abolish
bistability altogether.

5.2 Future Directions

Although this study is purely computational, future work could test whether the model’s predictions
hold in biological systems. In particular, time-course measurements of caspase activity and cell
fate outcomes, under controlled perturbations, could help evaluate whether critical thresholds and
bistable switching behaviors predicted by the model occur in real apoptotic pathways. Eissing et
al. [I] combined mathematical modeling with experimental validation in cell lines, supporting the
biological relevance of bistable dynamics in apoptosis. Similar experiments could be used to test
the 2D version of our model.

Beyond single-parameter analysis, future studies could investigate how combinations of pa-
rameters influence bistability. Two-dimensional sweeps across pairs of reaction rates may reveal
interactions that are not apparent in isolation. These interaction maps could provide deeper insight
into how robustness and fragility emerge from interdependent reactions in the network.

Another direction is model refinement. One approach is to simplify the network further—such
as removing the non-essential parameter /11 or applying symbolic techniques to eliminate additional
variables, while preserving bistable behavior. Alternatively, the model could be expanded to incor-
porate additional pathways, such as more caspases and signals that influence apoptotic regulation.
These refinements may provide a more complete view of the signaling cascade and its behavior.

The methods used in this study could also be applied to other biological systems that involve
binary decisions. Examples include immune activation, stem cell differentiation, and developmental
processes where cells commit to one of two possible fates. Bistable dynamics are a common feature
in these systems, often driven by feedback loops [10]. Extending this modeling approach to other
contexts may help reveal whether similar switching mechanisms are at work and how they might
vary across biological pathways or cell types.

Altogether, this work provides a foundation for analyzing the decision-making architecture of
complex biological networks. By combining symbolic modeling, stability analysis, and parame-
ter sensitivity, we offer tools for uncovering the principles that govern how cells make irreversible
choices, insights that will be increasingly important as biological modeling moves closer to experi-
mental and clinical applications.
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A Appendix A: Parameter-Specific Plots
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