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Biological Background

Figure 1: Caspase model depicting feedback
regulation of apoptosis. [2].

Apoptosis: Programmed cell
death removes damaged cells
and shapes tissue during
development.

Caspases: Enzymes that
initiate in a cascade. Caspase-3
is the executioner caspase
triggering irreversible cell death.

Bistability: Biological switches
that allow all-or-nothing
decisions. Key to understanding
how cells commit to death.
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Biochemical Reaction Networks

What is a Biochemical Reaction Network?

A biochemical reaction network (BRN) is a system of chemical reac-
tions between biological species, governed by mass-action kinetics.

Example Reaction:

A+ B
k1−⇀↽−
ℓ1

C

Law of Mass Action leads to the following system:

d [A]

dt
= −k1[A][B] + ℓ1[C ]

d [B]

dt
= −k1[A][B] + ℓ1[C ]

d [C ]

dt
= k1[A][B]− ℓ1[C ]
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Caspase Reaction Network
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Legend:
→ Activation (Reactions 1–2)
→ Inhibition / Complex Formation (3, 4, 11)
→ Degradation (5–10, 12, 13)
99K Reverse Reactions (ℓ terms)

Figure 2: Reaction network of the caspase model.
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ODE System and Species Key

ODEs from Model:

dx1

dt
= −k2x1x4 − k9x1 + ℓ9

dx2

dt
= k2x1x4 − k5x2 − k11x2x7 + ℓ11x8

dx3

dt
= −k1x2x3 − k10x3 + ℓ10

dx4

dt
= k1x2x3 − k3x4x5 − k6x4 + ℓ3x6

dx5

dt
= −k3x4x5 − k4x4x5 − k8x5 + ℓ3x6 + ℓ8

dx6

dt
= k3x4x5 − k7x6 − ℓ3x6

dx7

dt
= −k11x2x7 − k12x7 + ℓ11x8 + ℓ12

dx8

dt
= k11x2x7 − k13x8 − ℓ11x8

ODE system from [2].

Species Key:

x1: Procaspase-8 (C8)

x2: Active Caspase-8 (C8*)

x3: Procaspase-3 (C3)

x4: Active Caspase-3 (C3*)

x5: Inhibitor of Apoptosis Protein (IAP)

x6: Caspase-3*–IAP complex

x7: CARP (Caspase-activated Regulation
Protein)

x8: C8*-CARP complex
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Mathematical Concepts: Steady States

Definition

A steady state occurs when all time derivatives ẋi = 0, meaning the
concentrations of species remain constant over time. These can be:

Stable: System returns to the steady state after small changes

Unstable: Small changes drive the system away

x

Valley

Stable

x

Hill

Unstable

Figure 3: Energy landscape illustrating steady-state stability
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Mathematical Concepts: Bistability

Bistability

A system is bistable if it admits two or more stable steady states
under the same parameter conditions. This enables switch-like be-
havior (see [4]) — the system can rest in one state or the other
depending on perturbations or initial conditions.

An unstable steady state typically separates the two attractors.

Figure 4: Illustration of bistability
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Waldherr et al. (2007): Sensitivity-Based Reduction

Sensitivity analysis: measures how changing a parameter affects
model output

Ranking species: Waldherr et al. identified the most influential for
caspase dynamics

Figure 5: Sensitivity analysis results
identifying species with strongest
influence on system dynamics. [5]

Reduced ODEs (4-variable system):

ẋ2 =
k9k2x4

k9 + k2x4
− k5x2 −

(k12 + k11x8)k11x2

k12 + k11x2
+ ℓ11x8

ẋ4 =
k10k1x2

k10 + k1x2
−

(k8 + k3x6)k3x4

(k3 + k4)x4 + k8
+ k3x6 − k6x4

ẋ6 =
(k8 + k3x6)k3x4

(k3 + k4)x4 + k8
− k3x6 − k7x6

ẋ8 =
(k12 + k11x8)k11x2

k12 + k11x2
− k11x8 − k13x8
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Focusing on the Feedback Loop

Positive Feedback Loop

x1 + x4 x2 + x3

x2 + x4k2 k1

Species Key:

x1: Procaspase-8 (C8) x2: Caspase-8* (C8*)
x3: Procaspase-3 (C3) x4: Caspase-3* (C3*)

Mechanism:

• Caspase-8* (x2) activates Procaspase-3 (x3) to form Caspase-3* (x4) via k1.
• Caspase-3* (x4) enhances activation of Procaspase-8 (x1) into Caspase-8* (x2) via k2.

This forms a reinforcing positive feedback loop.

Figure 6: Diagram of the core feedback loop: Caspase-3 enhances Caspase-8 activation,
reinforcing bistable switching.
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Model Consolidation: Two-Species Reduction

We reduce to Caspase-8 (x2) and Caspase-3 (x4), the initiator and
executioner of apoptosis.

Reduced ODEs (Symbolically Derived):

ẋ2 =
−k11k13 l12x2 (k2x4 + k9) + k2 l9x4 (k11k13x2 + k12k13 + k12 l11) − k5x2 (k2x4 + k9) (k11k13x2 + k12k13 + k12 l11)

(k2x4 + k9) (k11k13x2 + k12k13 + k12 l11)

ẋ4 =
k1 l10x2 (k3k7x4 + k4k7x4 + k4 l3x4 + k7k8 + k8 l3) − k3k7 l8x4 (k1x2 + k10) − k6x4 (k1x2 + k10) (k3k7x4 + k4k7x4 + k4 l3x4 + k7k8 + k8 l3)

(k1x2 + k10) (k3k7x4 + k4k7x4 + k4 l3x4 + k7k8 + k8 l3)
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Simulation Framework & Parameter Setup

We simulate the reduced system
using symbolic and numerical tools
in Python:

SymPy for symbolic expressions

NumPy for numerical evaluation

Matplotlib for plotting

Table 1: Waldherr (2007) parameter values

Parameter Waldherr (2007)
k1 5.8 · 10−5

k2 1.0 · 10−5

k3 5.0 · 10−4

k4 3.0 · 10−4

k5 5.8 · 10−3

k6 5.8 · 10−3

k7 1.73 · 10−2

k8 1.16 · 10−2

k9 3.9 · 10−3

k10 3.9 · 10−3

k11 5.0 · 10−4

k12 1.0 · 10−3

k13 1.16 · 10−2

ℓ3 0.21
ℓ8 464
ℓ9 507
ℓ10 81.9
ℓ11 0.21
ℓ12 540

[5]
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Nullclines of Reduced System: Monostable Case

Plotted nullclines of ẋ2 = 0 and ẋ4 = 0 from reduced model

Intersections illustrate steady states; single intersection indicate
monostability

Dowdell, Texas A&M University Simulations 13 / 30



Simulation Framework & Parameter Setup

We simulate the reduced system
using symbolic and numerical tools
in Python:

SymPy for symbolic expressions

NumPy for numerical evaluation

Matplotlib for plotting

Modifications to Induce
Bistability:

Increase k1: enhances
Caspase-3 activation

Decrease ℓ12: slows apoptosis
inhibition

Table 2: Modified Parameter Set

Parameter Waldherr (2007) Modified Set
k1 5.8 · 10−5 1 .42 · 10−5

k2 1.0 · 10−5 1.0 · 10−5

k3 5.0 · 10−4 5.0 · 10−4

k4 3.0 · 10−4 3.0 · 10−4

k5 5.8 · 10−3 5.8 · 10−3

k6 5.8 · 10−3 5.8 · 10−3

k7 1.73 · 10−2 1.73 · 10−2

k8 1.16 · 10−2 1.16 · 10−2

k9 3.9 · 10−3 3.9 · 10−3

k10 3.9 · 10−3 3.9 · 10−3

k11 5.0 · 10−4 5.0 · 10−4

k12 1.0 · 10−3 1.0 · 10−3

k13 1.16 · 10−2 1.16 · 10−2

ℓ3 0.21 0.21
ℓ8 464 464
ℓ9 507 507
ℓ10 81.9 81.9
ℓ11 0.21 0.21
ℓ12 540 440
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Nullclines of Reduced System: Bistable Case

Intersections illustrate steady states; stable points act as “resting
states”; the unstable one is the threshold

Figure 7: Nullcline plot showing bistability in the reduced system
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Steady State Classification: Method

Each steady state occurs at a nullcline intersection where both ẋ2 = 0 and
ẋ4 = 0. To classify these points, we use the Jacobian matrix of the 2D
reduced system:

J(x2, x4) =

[
∂ẋ2
∂x2

∂ẋ2
∂x4

∂ẋ4
∂x2

∂ẋ4
∂x4

]

We compute the eigenvalues λ1, λ2 of J at each steady state and assess
stability by evaluating the real parts Re(λi ):

Re(λ1),Re(λ2) < 0: Stable
Mixed signs: Saddle (unstable)
Re(λ1),Re(λ2) > 0: Unstable

We repeat this classification for the full 8D system to verify that the
reduced model preserves stability structure. Stability via eigenvalue real
parts follows dynamical systems theory [3].
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ẋ4 = 0. To classify these points, we use the Jacobian matrix of the 2D
reduced system:

J(x2, x4) =

[
∂ẋ2
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Stability Classification Results (2D vs 8D)

Steady State 2D Eigenvalues 8D Real Parts Classification

Low (0, 0) [−11.56, −1.49] All negative Stable

Middle (971.4, 2144.5) [−0.037, +0.008] Mixed (1 positive) Saddle

High (5088.8, 4460.6) [−0.0087, −0.0036] All negative Stable

Table 3: Eigenvalue-based classification of steady states from both reduced and full systems.

Confirms bistability at the Modified parameter set.

All classifications match between the reduced 2D and full 8D model.

If the classifications did not match, it would indicate that the symbolic 2D
model fails to preserve the core dynamics of the full biochemical system,
and conclusions drawn from the reduced model would not be valid.
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Model Consolidation: One-Species Reduction

Reduced ODE for x4

ẋ4 =
large polynomial in x4 and ki , ℓi including

√
(· · · )

rational denominator in x4
+ · · ·

Figure 8: Single-variable nullcline projection of the caspase model
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Single-Variable Nullcline: Biological Plausibility

Reducing to a single ODE for x4 by solving ẋ2 = 0 may produce
biologically implausible results.

Back-substituting can yield negative or nonphysical concentrations for
x2 at certain x4.

x2 = −2908.97 (x4 = 2144.48)

x2 = −603.54 (x4 = 4460.63)

Negative concentrations are biologically impossible—these steady
states are not meaningful in the real system.

Conclusion: The 1D reduction is not reliable. For biologically valid
results, we must analyze the full 2D (or higher) system.
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biologically implausible results.

Back-substituting can yield negative or nonphysical concentrations for
x2 at certain x4.

x2 = −2908.97 (x4 = 2144.48)

x2 = −603.54 (x4 = 4460.63)

Negative concentrations are biologically impossible—these steady
states are not meaningful in the real system.

Conclusion: The 1D reduction is not reliable. For biologically valid
results, we must analyze the full 2D (or higher) system.

Dowdell, Texas A&M University Simulations 19 / 30



Single-Variable Nullcline: Biological Plausibility

Reducing to a single ODE for x4 by solving ẋ2 = 0 may produce
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Parameter Sweeps: Exploring Bistability

Parameter sweeps systematically vary one parameter at a time to
see how steady states and their stability change.

Systematic parameter variation, as applied in Albeck et al.[1], reveals
how feedbacks and rates shape cell fate decisions.

Reveal bifurcations: qualitative changes in system behavior (e.g.,
sudden loss/gain of steady states).

Identify which parameters are critical for maintaining bistability and
biological switching.

Goal: Determine which reaction rates control the cell’s ability to
make all-or-nothing life-or-death decisions.
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Bifurcation Diagram: Varying k1 (Caspase-3 Activation)

Sweep k1: controls how efficiently Caspase-8* activates Caspase-3.

Figure 9: Bifurcation diagram showing steady state x4 values as a function of k1
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Nullclines at Key Parameter Values: k1 Zones

Zone 1: Low k1 (Living
Only)

Zone 2: Middle k1
(Bistable)

Zone 3: High k1 (Apoptosis
Only)

Figure 10: Nullcline plots showing steady-state changes across low, middle, and high k1
regimes
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Key Parameters Controlling Bistable Behavior

Parameter Lower Bound Upper Bound Log-Width % of Scan
l9 4.98×102 8.70×102 0.24 2.0%
k3 8.11×10−5 4.33×10−4 0.73 6.1%
l12 7.05×101 3.76×102 0.73 6.1%
l10 9.33×101 4.98×102 0.73 6.1%
k4 3.27×10−4 2.31×10−3 0.85 7.1%
l3 2.01×10−1 1.42 0.85 7.1%
k7 2.31×10−3 1.63×10−2 0.85 7.1%
l8 7.05×101 4.98×102 0.85 7.1%
k1 8.70×10−6 1.42×10−4 1.21 10.1%
k9 2.48×10−4 4.04×10−3 1.22 10.2%
k10 3.27×10−4 5.34×10−3 1.22 10.2%
k2 8.70×10−6 1.87×10−4 1.33 11.1%
k6 3.27×10−4 7.05×10−3 1.34 11.2%
k5 3.27×10−4 1.23×10−2 1.58 13.2%
k12 1.00×10−7 2.85×10−2 5.45 45.4%
k8 1.00×10−7 4.64×10−1 6.67 55.6%
l11 1.00×10−7 5.72 7.76 64.7%
k13 4.33×10−4 1.00×105 8.36 69.7%
k11 2.01×10−5 1.00×105 9.70 80.8%

Table 4: Parameters with narrow bistable regions (e.g., l9, k3) act as key switches.
Wide ranges (e.g., k11) indicate robust tolerance.
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Identifying Essential Parameters: Nullcline Zeroing Method

Objective: Determine which reaction rates are critical for
maintaining bistability in the apoptosis model.

Method: Systematically set each parameter to zero and, for each
modified system, plot the nullclines (ẋ2 = 0, ẋ4 = 0) of the reduced
model.

Analysis:
If removing a parameter eliminates bistability, it is essential for the
switch.
If bistability remains, the parameter is dispensable for switch-like
behavior.

Insight: This approach provides a direct, visual way to assess the
functional role of each reaction in cell fate decisions.
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model.

Analysis:
If removing a parameter eliminates bistability, it is essential for the
switch.
If bistability remains, the parameter is dispensable for switch-like
behavior.

Insight: This approach provides a direct, visual way to assess the
functional role of each reaction in cell fate decisions.

Dowdell, Texas A&M University Simulations 24 / 30



Parameter Zeroing: Example Nullcline Behaviors

Figure 11: k1 = 0: Only low
stable state remains — cell
lives.

Figure 12: l8 = 0: Only high
stable state remains — cell
death is the attractor.

Figure 13: k9 = 0: High
state dominates —
irreversible apoptosis.
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ℓ11: Unique Dispensability for the Switch

Figure 14: Nullcline plot with ℓ11 = 0: Bistability is preserved, indicating that the
reaction associated with ℓ11 is not required for the switch mechanism.

ℓ11 is the only parameter whose removal (ℓ11 = 0) preserves
bistability.
Interpretation: Bistability persists without ℓ11, revealing that this
reaction is not critical to the apoptotic decision-making mechanism.
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Parameter Removal Reveals Distinct Stability Outcomes

Table 5: Effect of Parameter Removal on Nullcline Structure and Bistability

Outcome Type Parameters Zeroed Resulting Nullcline Behavior

Low stable only k1, k2, k4, ℓ3, ℓ9, ℓ10 Cell is trapped in survival; apoptosis
cannot occur

Low stable then saddle k5, k6 Cell is locked in survival; saddle is non-
functional

Low saddle then high
stable

k3, k7, ℓ8 Survival basin lost; unstable low region
leads to apoptosis

Mid saddle then high
stable

k8, k12 No survival state; flow from unstable
middle leads to apoptosis

High stable only k9, k10 Cell starts and ends in apoptosis; no
other dynamics exist

Low saddle only k11, k13, ℓ13 No stable state; biologically implausible

Bistable ℓ11 Switch retained; bistability preserved

Interpretation: Most single parameter removals disrupt switch-like behavior: either
locking cells in survival, forcing apoptosis, or eliminating stability altogether.
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Conclusions

Main Research Question:
How do specific reactions and parameters in the caspase network
influence bistability?

Systematic parameter removal revealed that nearly all reactions are
essential for bistability. ℓ11 was the only exception.

The two-variable model (Caspase-8 and -3) successfully retained full
system bistable dynamics, but the one-variable model (Caspase-3)
does not.

Bifurcation diagrams and bistability windows identified which
parameters most strongly shape the switch, revealing critical
thresholds and sensitivities.

Dowdell, Texas A&M University Conclusions & Future Work 28 / 30



Conclusions

Main Research Question:
How do specific reactions and parameters in the caspase network
influence bistability?

Systematic parameter removal revealed that nearly all reactions are
essential for bistability. ℓ11 was the only exception.

The two-variable model (Caspase-8 and -3) successfully retained full
system bistable dynamics, but the one-variable model (Caspase-3)
does not.

Bifurcation diagrams and bistability windows identified which
parameters most strongly shape the switch, revealing critical
thresholds and sensitivities.

Dowdell, Texas A&M University Conclusions & Future Work 28 / 30



Conclusions

Main Research Question:
How do specific reactions and parameters in the caspase network
influence bistability?

Systematic parameter removal revealed that nearly all reactions are
essential for bistability. ℓ11 was the only exception.

The two-variable model (Caspase-8 and -3) successfully retained full
system bistable dynamics, but the one-variable model (Caspase-3)
does not.

Bifurcation diagrams and bistability windows identified which
parameters most strongly shape the switch, revealing critical
thresholds and sensitivities.

Dowdell, Texas A&M University Conclusions & Future Work 28 / 30



Conclusions

Main Research Question:
How do specific reactions and parameters in the caspase network
influence bistability?

Systematic parameter removal revealed that nearly all reactions are
essential for bistability. ℓ11 was the only exception.

The two-variable model (Caspase-8 and -3) successfully retained full
system bistable dynamics, but the one-variable model (Caspase-3)
does not.

Bifurcation diagrams and bistability windows identified which
parameters most strongly shape the switch, revealing critical
thresholds and sensitivities.

Dowdell, Texas A&M University Conclusions & Future Work 28 / 30



Future Directions

Experimental Validation

Compare simulation results with experimental data, such as measurements
of cell fate or protein activity levels, to test whether the predicted bistable
behavior actually occurs in biological systems. This helps confirm that the
model accurately captures real-world dynamics.

Parameter Pair Interactions

Investigate how pairs of parameters interact by running two-dimensional
simulations and generating heatmaps, which can highlight combinations
that either promote or suppress bistability. This can reveal more complex
control mechanisms not visible in one-parameter scans.
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