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Abstract

In this paper, we are interested in a ribbon link obstruction discovered by
Eisermann in 2008, which states that the Jones polynomial of an n-component
ribbon link is divisible by the Jones polynomial of the n-component unlink.
We conjecture that a part of Eisermann’s condition follows from the Alexander
module having maximal rank, a well-known necessary condition for topological
sliceness. We prove that this conjecture holds for special families of links, such
as torus links, a large family of satellite links which includes untwisted cables
and Bing doubles, and all links whose prime factors each have at most 14
crossings. We also provide a counterexample to a question of Eisermann.

1 Introduction

In 2008, Eisermann discovered an obstruction to ribbonness that arises from the Jones
polynomial:

Theorem 1.1 (Eisermann, [5]). Let L = K1 ⊔ · · · ⊔ Kn be an n-component ribbon
link and let V (L) be the Jones polynomial of L. Then all of the following hold:

(a) L has full Jones nullity

(b) L satisfies the following:

(VL/V⃝n)(i) ≡ VK1(i) · · ·VKn(i) mod 32

Here, ⃝n is the n-component unlink and i =
√
−1.

We compare this obstruction to several well-known obstructions to sliceness. In
particular, we are interested in exploring whether Eisermann’s condition follows from
conditions related to the linking matrix, signature, and Alexander polynomial:
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Fact 1.2. Let L be an n-component topologically slice link. Then all of the following
hold:

(a) The linking matrix of L is 0. (See [8, Lemma 8.13]).

(b) The signature of L is 0. (See [7, Corollary 12.3.2]).

(c) L has full Alexander nullity, meaning the Alexander nullity of L equals n − 1.
(See [7, Corollary 12.3.14]).

Using the SnapPy Python library [4], we were able to verify the following conjec-
ture for all prime links of up to 14 crossings:

Conjecture 1.3. Let L be a link with n ≥ 2 components. If L has full Alexander
nullity, then

1. L has linking matrix 0.

2. L has even signature.

3. L has full Jones nullity.

The main goal of this paper is to prove this conjecture for certain special classes
of links:

Theorem 1.4. Conjecture 1.3 holds for the following three classes of links:

• Links whose prime factors each have at most 14 crossings (Section 3)

• Torus links (Section 4)

• Satellites of knots with pattern isotopic to the unlink (Section 5)

Standard definitions are given in Section 8. Background, including definitions of
the Jones polynomial and Alexander module, is given in Section 2. A counterexample
to a question of Eisermann is given in Section 6, and ideas for future work are given
in Section 7.

2 Background

We now go over some background directly related to Conjecture 1.3 so as to fix
notation and normalizations that may differ from that of other authors.
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2.1 Jones Polynomial

Notation. Following the conventions of [5], given a link L we write the Jones poly-
nomial V (L) ∈ Z[q, q−1] in terms of the variable q = −

√
t.

Definition 2.1 (Jones polynomial). The Jones polynomial of a link L is a Laurent
polynomial VL ∈ Z[q, q−1] which is invariant under isotopy and satisfies the following
Skein relation:

• V⃝(q) = 1.

• (−q + q−)VL0(q) = q−2VL+(q)− q2VL−(q).

L+ L− L0

Eisermann was interested in the multiplicity of the factor (q + q−1) in the Jones
polynomial, which we call the Jones nullity of a link. The Jones nullity of an n-
component link is bounded above by n− 1. When this maximum is attained, we say
that L has full Jones nullity.

In Eisermann’s proof of Theorem 1.1, he chose to work with the Kauffman bracket
instead of the Jones polynomial:

Definition 2.2 (Kauffman bracket). The Kauffman bracket of a link diagram D is
a Laurent polynomial ⟨D⟩ ∈ Z[A,A−1] which is invariant under regular isotopy and
satisfies the following recursive relations:

• ⟨⃝⟩ = 1

• ⟨ ⟩ = A⟨ ⟩+ A−1⟨ ⟩.

• ⟨D ⊔⃝⟩ = ⟨D⟩ · (−A2 − A−2)

The Jones polynomial can be recovered from the Kauffman bracket. If L is a link
and D is a diagram for L, then

VL(−A−2) = ⟨D⟩ · (−A−3)writhe(D)

In particular, we use the fact that the Jones nullity is preserved in the Kauffman
bracket and can be read off in the same way. This is because a factor of (q + q−)
in the Jones polynomial corresponds to a factor of (−A−2 − A+2) in the Kauffman
bracket, and multiplicity of this factor is unaffected by changes in writhe.

3



2.2 The Alexander module

For every n-component link L ⊆ S3, we can construct a module over the Laurent
polynomial ring in n variables Λ = Z[t1, · · · , tn, t−1

1 , · · · , t−1
n ]. This module is called

the Alexander module of L, and is denoted as A(L). A full construction of the module
may be found in [7, Chapter 7]. We provide a brief description here.

Let E = S3 \ L. We can consider π1(E) and its abelianization map γ : π1(E) →
H1(E) ∼= Zn. Denote by Eγ a covering space with covering map p : Eγ → E such
that p∗(π1(Eγ)) = [π1(E), π1(E)], the commutator subgroup. This is known as the
universal abelian cover. We can then identify H1(E) with the deck transformation
group of p. Fixing a point b ∈ E, we can view H1(Eγ, p

−1(b)) as a module over the
group ring ZH1(E) ∼= Λ. This module is the Alexander module of L.

One nice way to think about the universal abelian cover is by considering a Seifert
surface bounding each component of the link which acts a “portal” connecting each
sheet of our covering space. Then, each variable ti in Λ acts by “moving through”
the portal defined by the ith component of L in the positive orientation (see Figure
1).

Figure 1: A drawing of the universal abelian cover of the 2-component unlink. Passing
through the left component of the link transports you up or down a sheet, while
passing through the right component transports you left or right a sheet.

It is often more useful to analyze the Alexander module via a presentation matrix
of the module. The most direct way to obtain such a presentation matrix is to perform
Fox calculus on the Wirtinger presentation of π1(S

3 \ L):

Definition 2.3 (Wirtinger presentation). Let L ⊆ S3 be a link. The link exterior S3\
L and its fundamental group π1(S

3 \L) are isotopy invariants. Given a link diagram
for L, one can construct a group presentation called the Wirtinger presentation for
π1(S

3 \ L) where each generator corresponds to an arc on the link diagram and each
relation corresponds to a crossing. One of these relations will always be redundant,
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so for a link diagram with p crossings, we can always find a Wirtinger presentation
with p generators and p− 1 relations.

a

c b

ac

cb

=

Figure 2: An example of how a relation in the Wirtinger presentation corresponds to
a crossing in a link diagram.

1 2 3 4

Figure 3: A drawing that shows why the Wirtinger presentation of the fundamental
group of a link complement is overdetermined: From left to right, the loop drawn
in black can be moved to the other side of the crossing without passing behind the
crossing. Thus, the relation corresponding to this crossing is unnecessary. The black
loop is allowed to pass through itself.

Definition 2.4 (Fox derivative). Let G = ⟨x1, · · · , xn⟩ be a free group. For each
i ∈ {1, · · · , n}, the Fox derivative with respect to xi is the map ∂

∂xi
: G → ZG given

by the following rules:

• ∂
∂xi

(xj) = δij (Kronecker delta)

• ∂
∂xi

(uv) = ∂
∂xi

(u) + u ∂
∂xi

(v) for any u, v ∈ G

Theorem 2.5. [7, Theorem 7.1.5] Let L be a link, and let ⟨x1, · · · , xp | r1, · · · , rp−1⟩
be a presentation for π1(S

3 \L). Let G = ⟨x1, · · · , xp⟩, and let ψ : G→ π1(S
3 \L) be

the natural quotient map. Let γ : π1(S
3 \L) → H1(S

3 \L) be the abelianization map.
Extend γ ◦ψ : G→ H1(S

3 \L) to a map ZG→ ZH1(S
3 \L) ∼= Λ by linearity. Then,

the p× (p− 1) matrix with (i, j)-th entry γ ◦ ψ(∂rj/∂xi) is a presentation matrix for
A(L).

Notation. When we apply Theorem 2.5, we often supress the notation of ψ, simply
writing γ when we really mean γ ◦ ψ.
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Notation. Many authors, including those of [7] and [6], use the convention that
matrices act on the right of row vectors. In this paper we view matrices as acting
on the left of column vectors. As such, our matrices are the transpose of how they
would be written in those texts. The statement of Theorem 2.5 has been altered to
align with our convention.

Here, we restate [7, Definition 7.3.1], which defines the Alexander nullity of a link:

Definition 2.6 (Alexander nullity). The Alexander nullity of an n-component link L,
denoted β(L), is equal to rankA(L)− 1. Equivalently, given a presentation matrix P
of A(L) with p rows we have β(L) = p−rank(P )−1, where rank(P ) is computed over
the field of fractions of Λ. We say that L has full Alexander nullity if β(L) = n−1.
Note that β(L) ≤ n− 1 by [7, Corollary 7.3.13].

3 Links with small prime factors

The goal of this section is to prove Theorem 3.2, which tells us that the property
of being a counterexample to Conjecture 1.3 is inherited by at least one of a link’s
prime factors. Since all prime links of up to 14 crossings have been manually checked
via [4] to satisfy Conjecture 1.3, we conclude that Conjecture 1.3 also holds for all
composite links arising from these primes (Corollary 3.3).

Lemma 3.1. Alexander nullity is additive under connected sum. That is, given links
L1 and L2, we have β(L1#L2) = β(L1) + β(L2).

Proof. This proof has three steps:

1. Use the Wirtinger presentation to understand how the fundamental group of
the complement of L1#L2 relates to that of L1 and L2.

2. Use Fox calculus to obtain a presentation matrix for A(L1#L2) in terms of
presentation matrices of A(L1) and A(L2).

3. Compute β(L1#L2) from this presentation matrix.

Step 1: Let n and m denote the number of components in L1 and L2, respectively.
Fix link diagrams for L1 and L2, and let p and q be the number of crossings in each
diagram. We consider the Wirtinger presentations for these diagrams:

G1 := π1(S
3 \ L1) = ⟨a1, . . . , ap | r1, . . . , rp−1⟩,

G2 := π1(S
3 \ L2) = ⟨b1, . . . , bq | s1, . . . , sq−1⟩.

Performing a connected sum has the effect of identifying the two generators corre-
sponding to the two arcs merged. Without loss of generality, we may assume these
are the generators a1 ∈ G1 and b1 ∈ G2.
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Figure 4: Generators of merged arcs under connected sum

Thus, the Wirtinger presentation of the connected sum is the union of the gener-
ators and relations, with the additional relation a1 = b1:

π1(S
3 \ (L1#L2)) = ⟨a1, . . . , ap, b1, . . . , bq | r1, . . . , rp−1, s1, . . . , sq−1, a1b

−1
1 ⟩.

Step 2: Let P1 and P2 denote the presentation matrices of the Alexander modules
A(L1) and A(L2) obtained via Fox calculus. Let the number of rows in the matrices
P1 and P2 be p and q, respectively. Let e1 and f1 denote p × 1 and q × 1 column
vectors, respectively, with first entry 1 and all other entries 0. Using Fox calculus on
the relations of π1(S

3 \ (L1#L2)) yields the following presentation matrix, written in
block form:

P# =

[
P1 0 e1
0 P2 −f1

]
Step 3: Our goal is to show that rank(P#) = rank(P1) + rank(P2) + 1, since from

this it would follow that

β(L1#L2) = (p+ q)− rank(P#)− 1

= (p+ q)− rank(P1)− rank(P2)− 2

= (p− rank(P1)− 1) + (q − rank(P2)− 1)

= β(L1) + β(L2).

This reduces to showing that the column vector

[
e1
−f1

]
is not a linear combination of

the columns of the matrix

[
P 0
0 Q

]
(with coefficients from the field of fractions). For

this, it suffices to show that e1 is not a linear combination of the columns of P .
As in Section 2.2, let Λ denote the Laurent polynomial ring in n variables so

that the entries of P lie in Λ. Let γ : ZG1 → Λ denote the abelianization map
G1 → H1(S

3 \ L1) ∼=
∏n

i=1⟨ti⟩ extended by linearity to the group rings. By [7,
Theorem 7.1.5], we have the following chain complex:

Λp−1 P−−→ Λp
∂1−−−→ Λ −−→ 0,
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where ∂1 is given by the 1 × p matrix whose ith entry is γ(ai) − 1. We may tensor
each module in this chain complex with the field of fractions Frac(Λ) to get the chain
complex

Frac(Λ)p−1 P−−→ Frac(Λ)p
∂1−−−→ Frac(Λ) −−→ 0.

Note that ∂1(e1) = γ(a1) − 1. Since a1 is a generator of G1, we have that γ(a1) is
a nontrivial element of H1(S

3 \ L1) ⊆ Λ. In particular, γ(a1) ̸= 1. So e1 /∈ ker ∂1,
meaning e1 /∈ im(P ). Thus, e1 is not in the column space of P , and we are done.

Theorem 3.2. Suppose that L is a link for which Conjecture 1.3 does not hold. Then
Conjecture 1.3 must fail to hold for at least one prime factor of L.

Proof. This follows from the behavior of our link invariants under connected sum.
Suppose L = L1#L2. Then

1. L has linking matrix 0 if and only if both L1 and L2 have linking matrix 0.

2. Signature is additive under connected sum. In particular, if L has odd signature,
then either L1 or L2 has odd signature.

3. Jones polynomial is multiplicative under connected sum. In particular, Jones
nullity is additive under connected sum, meaning L has full Jones nullity if and
only if both L1 and L2 have full Jones nullity.

4. Alexander nullity is additive under connected sum by Lemma 3.1. In particular,
L has full Alexander nullity if and only if both L1 and L2 have full Alexander
nullity.

Corollary 3.3. Every link whose prime decomposition consists solely of links with at
most 14 crossings satisfies Conjecture 1.3.

4 Results on torus links

We have seen that all prime links of up to 14 crossings satisfy Conjecture 1.3. Here,
we consider the special case of torus links:

Definition 4.1 (Torus knot). Let K1 ⊔ K2 be the Hopf link, and let N(K1) be a
tubular neighborhood of K1 disjoint from K2. For coprime integers p and q, we define
the (p, q) torus knot, denoted T (p, q), to be the knot lying on the boundary of N(K1)
(a torus) for which lk(T (p, q), K1) = q and lk(T (p, q), K2) = p.
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Figure 5: The trefoil, T (2, 3), lying on a torus.

Definition 4.2 (Torus link). [1] Let p and q be coprime integers, and let n be a
positive integer. Then we define the (p, q) torus n-link, denoted T (np, nq), to be the
link consisting of n parallel copies of T (p, q) lying on a torus embedded in S3.

When p, q ̸= 0 and n ≥ 2, the link T (np, nq) has nonzero linking matrix. Our
conjecture would then suggest that these links do not have full Alexander nullity. We
find that this is true:

Theorem 4.3. Let p and q be nonzero coprime integers, and let n ≥ 2. Then the
torus link T (np, nq) has Alexander nullity 0.

Proof. By [1, Theorem 4.3] we have that

π1(S
3 \ T (np, nq)) = ⟨α, β, f1, · · · , fn−1 | αpβ−q, αpf1β

−qf−1
1 , · · · , αpfn−1β

−qf−1
n−1⟩.

If the generators are made to commute with each other, all relations reduce to the first
one. SoH1(S

3\T (np, nq)) is the free abelian group on the generators α, β, f1, · · · , fn−1

with the additional relation αp = βq. Since T (np, nq) is an n-component link, this is
isomorphic to the free abelian group ⟨t1⟩ × · · · × ⟨tn⟩. An explicit isomorphism γ is
given by

γ(α) = tqn,

γ(β) = tpn,

γ(fi) = ti for all i ∈ {1, · · · , n− 1}.

Using the method of Fox free calculus (Theorem 2.5) we find that the following is an
(n+ 1)× n presentation matrix for the Alexander module of T (np, nq):

tpqn −1
tqn−1

tpqn −1
tqn−1

tpqn −1
tqn−1

· · · tpqn −1
tqn−1

− tpqn −1
tpn−1

−t1 t
pq
n −1
tpn−1

−t2 t
pq
n −1
tpn−1

· · · −tn−1
tpqn −1
tpn−1

0 tpqn − 1 0 · · · 0
0 0 tpqn − 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · tpqn − 1


.
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This matrix has n + 1 rows and rank n, meaning the Alexander nullity is (n + 1) −
n− 1 = 0.

5 Results on satellite links

Here we characterize a large class of satellite links that have full Alexander nullity
and even signature.

Definition 5.1 (Satellite link). Let K ⊆ S3 be a knot, and let L ⊆ S1 × D2 be a
link embedded in a solid torus. Let c denote a point in the interior of D2 and let p
denote a point on the boundary of D2. Let φ : S1×D2 → S3 be an embedding of the
solid torus into S3 such that φ(S1 × {c}) = K and lk(φ(S1 × {c}), φ(S1 × {p})) = 0.
Then we call the link φ(L) a satellite of K with pattern L.

Proposition 5.2. Fix a diagram for a link L. Then π1(S
3 \ L) is generated by the

set of meridians around arcs containing local maxima in the diagram.

Proof. This is well-known and follows directly from considering a Wirtinger presen-
tation for the diagram. See, for example, [2, Introduction].

Theorem 5.3. Let K be a knot, let P = K0 ⊔K1 ⊔ · · · ⊔Kn be an n+ 1 component
link with the following properties:

1. K0 is isotopic to the unknot.

2. P \K0 is isotopic to the n-component unlink.

S3 \K0 is homeomorphic to a solid torus, so viewing P \K0 as a subset of this solid
torus, let L denote the satellite of K with pattern P \K0. Then L has full Alexander
nullity.

Proof. See Figure 6. This proof has two steps:

1. Compute a group presentation for π1(S
3 \ L) using Van Kampen’s theorem.

2. Use Fox calculus to compute a presentation matrix for the Alexander module
of L, then compute its rank.

Step 1: Let A be an open tubular neighborhood of K containing L, and let B be the
interior of the complement of A. Make A slightly thicker so that A ∪B = S3 \ L. In
order to apply Van Kampen’s theorem, we make the following observations:

• By applying Proposition 5.2 to a suitable diagram of P , we find that there exists
a presentation ⟨t1, · · · , td, a1, · · · , an | s1, · · · , sn+d−1⟩ for π1(S

3 \ P ) such that
ai is a meridian of Ki for all i ∈ {1, · · · , n} and ti is a meridian of K0 for all
i ∈ {1, · · · , d}. The subspace A is homeomorphic to S3 \ P , so we may write

π1(A) = π1(S
3 \ P ) = ⟨t1, · · · , td, a1, · · · , an | s1, · · · , sn+d−1⟩.
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b2
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b3 b4

Figure 6: An illustration of how things will be labeled.

• Fix a Wirtinger presentation ⟨b1, · · · , bp | r1, · · · , rp−1⟩ for K. The subspace B
is a deformation retract of S3 \K, so we may write

π1(B) = π1(S
3 \K) = ⟨b1, · · · , bp | r1, · · · , rp−1⟩.

• A ∩ B deformation retracts to a torus, so π1(A ∩ B) = ⟨m⟩ × ⟨ℓ⟩, where m
represents a meridian on the torus and ℓ represents a longitude. Let ιA denote
the inclusion A∩B ↪→ A, and let ιA∗ denote the induced map on the fundamental
groups. Define ιB∗ analogously.

By Van Kampen’s theorem, we have

π1(S
3 \ L) = ⟨b1, · · · , bp, t1, · · · , td, a1, · · · , an | r1, · · · , rp−1, s1, · · · , sn+d−1,

ιA∗ (m)ιB∗ (m)−1, ιA∗ (ℓ)ι
B
∗ (ℓ)

−1⟩.

Step 2: Let γ : π1(S
3 \L) → H1(S

3 \L) be the abelianization map. Since each ai
is a meridian of Ki and L is the image of an embedding of K1 ⊔ · · · ⊔Kn into S3, we
have that H1(S

3 \ L) = ⟨γ(a1)⟩ × · · · × ⟨γ(an)⟩.
Before we use Fox calculus to write down a presentation matrix for the Alexander

module of L, we first argue that some blocks of this matrix consist of all zeros:

• Claim: For all i ∈ {1, · · · , n} and j ∈ {1, · · · , n+ d− 1}, we have γ(
∂sj
∂ai

) = 0.

Proof: Notice that γ(tj) = 1 for all j ∈ {1, · · · , d} since the loop tj has linking
number 0 with Ki for all i ∈ {1, · · · , n}. Therefore,

γ

(
∂sj
∂ai

)
= γ

(
∂sj
∂ai

∣∣∣
t1,··· ,td=1

)
= γ

(
∂(sj|t1,··· ,td=1)

∂ai

)
.
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It now suffices to show that sj|t1,··· ,td=1 = 1. Recall that P \ K0 is the n-
component unlink, meaning

π1(S
3 \ (P \K0)) = ⟨a1, · · · , an⟩.

Let φ : S3 \ P ↪→ S3 \ (P \K0) be the natural inclusion map, and let

φ∗ : π1(S
3 \ P ) = ⟨t1, · · · , td, a1, · · · , an | s1, · · · , sn+d−1⟩

→ ⟨a1, · · · , an⟩ = π1(S
3 \ (P \K0))

be the induced map on the fundamental groups. Intuitively, φ∗ describes what
happens to the fundamental group of S3 \ P when we “fill in” K0. From this
description it is clear that φ∗ maps meridians ofK0 to the identity. In particular,
φ∗(ti) = 1 for all i ∈ {1, · · · , d}.
Let ψ : ⟨t1, · · · , td, a1, · · · , an⟩ → π1(S

3 \ P ) be the natural projection from
the free group on n + d generators. Then the composition φ∗ ◦ ψ is exactly
the evaluation homomorphism |t1,··· ,td=1. In other words, the following diagram
commutes:

⟨t1, · · · , td, a1, · · · , an⟩ ⟨t1, · · · , td, a1, · · · , an | s1, · · · , sn+d−1⟩

⟨a1, · · · , an⟩

ψ

|t1,··· ,td=1

φ∗

Since ψ(sj) = 1, we have that sj|t1,··· ,td=1 = φ∗ ◦ ψ(sj) = φ(1) = 1, as desired.

• Claim: For all i ∈ {1, · · · , n}, we have γ(∂(ι
A
∗ (ℓ)ιB∗ (ℓ)−1)

∂ai
) = 0.

Proof: First notice that ∂(ιA∗ (ℓ)ιB∗ (ℓ)−1)
∂ai

= ∂ιA∗ (ℓ)
∂ai

since the word ιB∗ (ℓ)
−1 does not

contain ai. Let φ and ψ be defined as before. By the same reasoning as in the
previous claim, it suffices to show that φ∗ ◦ ψ(ιA∗ (ℓ)) = 1.

Recall that ℓ is a longitude of the torus A ∩ B. Pulling ℓ back along the
homeomorphism S3 \ P ∼= A, we find that ℓ corresponds to a meridian of K0.
It follows that ψ(ιA∗ (ℓ)) is a meridian of K0. Since φ∗ sends meridians of K0 to
the identity, we have φ∗ ◦ ψ(ιA∗ (ℓ)) = 1, as desired.

With these facts in mind, by Theorem 2.5 we get the following presentation matrix
for the Alexander module of L, writing [m] as shorthand for ιA∗ (m)ιB∗ (m)−1 and [ℓ] as
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shorthand for ιA∗ (ℓ)ι
B
∗ (ℓ)

−1:



r1 · · · rp−1 s1 · · · sn+d−1 [m] [ℓ]

b1 γ(∂r1
∂b1

) · · · γ(∂rp−1

∂b1
) 0 · · · 0 γ(∂([m])

∂b1
) γ(∂[ℓ]

∂b1
)

...
...

. . .
...

...
. . .

...
...

...

bp γ(∂r1
∂bp

) · · · γ(∂rp−1

∂bp
) 0 · · · 0 γ(∂[m]

∂bp
) γ(∂[ℓ]

∂bp
)

t1 0 · · · 0 γ(∂s1
∂t1

) · · · γ(∂sn+d−1

∂t1
) γ(∂[m]

∂t1
) γ(∂[ℓ]

∂t1
)

...
...

. . .
...

...
. . .

...
...

...

td 0 · · · 0 γ(∂s1
∂td

) · · · γ(∂sn+d−1

∂td
) γ(∂[m]

∂td
) γ(∂[ℓ]

∂t1
)

a1 0 · · · 0 0 · · · 0 γ(∂[m]
∂a1

) 0
...

...
. . .

...
...

. . .
...

...
...

an 0 · · · 0 0 · · · 0 γ(∂[m]
∂an

) 0


.

The number of rows in this matrix is p+ d+ n. We claim that this matrix has rank
at most p + d. If this were the case, then β(L) ≥ (p + d + n)− (p + d)− 1 = n− 1,
and we would be done.

For this proof, we will interpret rank as “the dimension of the row space”. If
γ(∂[m]

∂ai
) = 0 for all i then the matrix clearly has the desired rank, so from now on,

assume without loss of generality that γ(∂[m]
∂a1

) ̸= 0.
The rows labeled a2, · · · , an are multiples of the row labeled a1, so the set con-

sisting of the rows labeled b1, · · · , bp, t1, · · · , td, a1 is a spanning set for the row space.
Therefore, the rank is at most p+ d+ 1. To lower this bound to p+ d, we will show
that this set is linearly dependent. By adding multiples of row a1 to rows b1, · · · , bp,
we can eliminate the entries in column [m]. To show linear dependence, it now suffices
to show that

det

γ(
∂r1
∂b1

) · · · γ(∂rp−1

∂b1
) γ(∂[ℓ]

∂b1
)

...
. . .

...
...

γ(∂r1
∂bp

) · · · γ(∂rp−1

∂bp
) γ(∂[ℓ]

∂bp
)

 = 0. (1)

Notice that γ has the following three properties:

1. γ maps all bi to the same element in H1(S
3 \ L). (this element can be written

as
∏n

i=1 γ(ai)
lk(K0,Ki), but we don’t need this fact for the proof).

2. γ(ri) = 1 for all i ∈ {1, · · · , p − 1} since relations in a Wirtinger presentation
are all of the form bjbkb

−1
j b−1

l .

3. γ([ℓ]) = 1. To see this, we write

γ([ℓ]) = γ(ιA∗ (ℓ)ι
B
∗ (ℓ)

−1) = γ(ιA∗ (ℓ))γ(ι
B
∗ (ℓ))

−1.

γ(ιA∗ (ℓ)) = 1 since ℓ has linking number 0 with all Ki, and γ(ι
B
∗ (ℓ)) = 1 since ℓ

has linking number 0 with K.

13



By the discussion under [6, Equation 3.6], these three facts imply that

p∑
i=1

γ(∂[ℓ]
∂bi

) = 0 and

p∑
i=1

γ(
∂rj
∂bi

) = 0 for all j ∈ {1, · · · , p− 1}.

This tells us that the sum of the rows of the matrix in (1) is zero, meaning the rows
are linearly dependent and the determinant is zero, as desired.

Theorem 5.4. Let K be a knot, let P be a link embedded in a solid torus in S3, and
let L be a satellite of K with pattern P . Then the signature of L has the same parity
as the signature of P . In particular, since the n-component unlink has signature 0,
all links satisfying the hypothesis of Theorem 5.3 have even signature.

Proof. By the construction in [8, Theorem 6.15], L has a Seifert matrix of the form[
M 0
0 X

]
where M is a Seifert matrix for P and

X =


A A A · · · A
AT A A · · · A
AT AT A · · · A
...

...
...

. . .
...

AT AT AT · · · A

 ,
where A is a Seifert matrix for K. Writing σ to denote the signature of a link and
sig to denote the signature of a matrix, we have

σ(L) = sig(M +MT ) + sig(X +XT ) = σ(P ) + sig(X +XT ).

Thus, to prove the claim, it suffices to show that sig(X +XT ) is even. Let

B =


I −I 0 · · · 0
0 I −I · · · 0
0 0 I · · · 0
...

...
...

. . .
...

0 0 0 · · · I

 ,
where I denotes the identity matrix of the same size as A, and let

Y := B(X +XT )BT =


A− AT

−A+ AT A− AT

−A+ AT
. . .

. . . A− AT

−A+ AT A+ AT

 .
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By Sylvester’s law of inertia, sig(X + XT ) is equal to sig(Y ). Suppose that Y is
w blocks wide. To show that Y has even signature, we proceed by induction on w.
There are two base cases:

• If w = 1 then Y =
[
A+ AT

]
, and sig(A + AT ) = σ(K) which is even since K

is a knot.

• If w = 2 then Y =

[
0 A− AT

−A+ AT A+ AT

]
. The determinant of this matrix

equals det(A − AT )2, which is nonzero since det(A − AT ) = ∆K(1) = ±1 (see
[8, Theorem 6.10]). Since Y is even-dimensional and has no zero eigenvalues,
we conclude that it must have even signature.

Now assume w > 2. Let

C =


I 0 0 · · · 0
0 I 0 · · · 0
I 0 I · · · 0
...

...
...

. . .
...

0 0 0 · · · I


so that

CY CT =


A− AT

−A+ AT 0

0
. . .

. . . A− AT

−A+ AT A+ AT

 .
This is a block diagonal matrix, so its signature is the sum of the signatures of the
blocks. The upper left block has even signature by the same argument as in our second
base case, and the lower right block has even signature by our inductive hypothesis.
We conclude that sig(CY CT ) = sig(Y ) = sig(X +XT ) is even, and we are done.

Lemma 5.5. Let L be a 2-component link with even signature. Then q+ q−1 divides
VL(q). In other words, L has full Jones nullity.

Proof. Fix a Seifert surface for L and let g be its genus. Since L has two components,
the Seifert matrix A has dimension 2g + 1, which is odd. Since A + AT has even
signature, it must have an odd number of 0 eigenvalues, counting multiplicity. In
particular we have det(L) = 0, which implies VL(i) = 0 since det(L) = VL(i). There-
fore, VL(q) is divisible by q+ q

−1, the generator of the ideal consisting of polynomials
in Z[q, q−1] which evaluate to 0 at i.

Corollary 5.6. Let L be a 2-component link satisfying the hypothesis of Theorem 5.3.
Then L has full Jones nullity.
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Proof. Theorem 5.4 tells us that L has even signature. Then Lemma 5.5 tells us that
L has full Jones nullity, as desired.

We present applications of these theorems to several well-known classes of links:

5.1 Cable links

Definition 5.7 (Cable link). Let K be a knot, and let T (p, q) ⊆ S1 ×D2 be a torus
link lying on the surface of a solid torus. We define a (p, q) cable of K to be a satellite
of K with pattern T (p, q). See Figure 7.

Figure 7: A (2, 0) cable of the trefoil.

Corollary 5.8. Let K be a knot, and let L be an (n, 0) cable of K. Then L has full
Alexander nullity.

Proof. In the language of Theorem 5.3, L arises from setting P equal to the following
link:

Kn

K2

K1

K0

...
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Theorem 5.4 tells us that all (n, 0) cable links have even signature. We can
strengthen this result:

Theorem 5.9. Let K be a knot, and let L be an (n, 0) cable of K. If n is even, then
L has signature 0. If n is odd, then L has signature equal to that of K.

Proof. Since L has linking matrix zero, [9, Theorem 1] tells us that the signature of
L is invariant under switching the orientation of any component of L. Thus, for the
purpose of computing the signature, we may view L as an unoriented link.

If n is even, then consider the Seifert surface for L consisting of n/2 disjoint
parallel annuli. (we don’t require the surface to be connected, see [3, Section 2]).

Figure 8: Seifert surface of the (6, 0) cable of the unknot.

The first homology of such a surface has n/2 generators, and they all have linking
number 0 with each other and with their positive pushes (see Definition 8.4). Thus,
the Seifert matrix corresponding to this surface is the zero matrix, which tells us the
signature is zero.

If n is odd, then fix a Seifert surface Σ for K and let K1, · · · , Kn−1 be positive
pushes of K = ∂Σ. Since K1 does not pass through Σ, we have that lk(K1, K) = 0.
By applying the same reasoning to all other pairs, we find that the n-component link
K ⊔K1 ⊔ · · · ⊔Kn−1 has linking matrix zero. Therefore, this link is an (n, 0) cable
of K, and we may take this to be L. Now, we can construct a Seifert surface for
L consisting of n−1

2
parallel bands with boundary K1 ⊔ · · · ⊔Kn−1, together with Σ

which has boundary K. Call this surface Σ.

K4K3

K2K1

K Σ

Figure 9: Seifert surface of the (5, 0) cable of the unknot.

If H1(Σ) has d generators, then H1(Σ) has n−1
2

additional generators. Each of
these additional generators has linking number zero with all other generators and
with their own positive pushes. Therefore, letting AΣ and AΣ denote Seifert matrices
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for Σ and Σ, respectively, we find that AΣ is a square matrix of size d + n−1
2

which
contains a copy of AΣ in the upper left, and zeros everywhere else. It follows that
AΣ +ATΣ and AΣ +AT

Σ
have equal signatures, meaning the links K and L have equal

signatures.

Theorem 5.10. Let K be a knot, and let L be an (n, 0) cable of K. Then (q+q−1)n−1

divides VL(q). In other words, L has full Jones nullity.

Proof. WIP

5.2 Bing doubles

Definition 5.11 (Bing double). We define the Bing double of a knot K to be a
satellite of K with the following pattern:

Corollary 5.12. Let K be a knot, and let L be a Bing double of K. Then L has full
Alexander nullity.

Proof. In the language of Theorem 5.3, L arises from setting P equal to the Borromean
rings:

K1

K2

K0
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6 Comparing Murasugi nullity to Jones nullity

Since we’re exploring the relationship between the Alexander nullity and the Jones
nullity, one may also ask the question of whether the Murasugi nullity has a simi-
lar relation to the Jones nullity. Indeed, in [5, Question 7.9], Eisermann asked the
question of whether the Jones nullity was equal to the Murasugi nullity. Using [4],
we have found the following minimal counterexamples, and showed that there is no
inequality in either direction:

• The 3-component prime link “L12n1998” has Jones nullity 1 and Murasugi
nullity 2. (it also has Alexander nullity 0).

• The 4-component prime link “L14n63006” has Jones nullity 2 and Murasugi
nullity 1. (it also has Alexander nullity 0).

L12n1998 L14n63006

The names of these links come from the Thistlethwaite link table.

7 Continuing work

We present some ideas on how to attack the general case of Conjecture 1.3:

Question 7.1. Is Alexander nullity a lower bound for Jones nullity?

This is true for all prime links of up to 14 crossings by [4]. If this were true for
all links, then full Alexander nullity would imply full Jones nullity, which is the third
part of Conjecture 1.3. If true, this would imply that all topologically slice links have
full Jones nullity.

An alternative approach to showing that all slice links have full Jones nullity would
be to answer the following:

Question 7.2. Is Jones nullity a concordance invariant?

An idea to prove this would be to follow a similar argument as in the proof
of [5, Theorem 1], using induction on the Kauffman bracket skein relations on the
concordance surface to reach the desired result.
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8 Standard definitions

Definition 8.1 (Regular isotopy). We say two link diagrams are regular isotopic if
they differ by a sequence of only the second and third Reidemeister moves.

Definition 8.2 (Linking matrix). Given a link L = K1⊔· · ·⊔Kn, the linking matrix
of L is the n×n matrix whose entry in the ith row and jth column equals lk(Ki, Kj),
the linking number between the ith and jth components.

Definition 8.3 (Seifert surface). A Seifert surface of a link L is any orientable surface
embedded in S3 whose boundary is L.

Definition 8.4 (Seifert matrix). Let Σ denote a Seifert surface for a link L. Consider
generators of the first homology group, H1(S), as loops in Σ. Now consider the 3-
dimensional manifold Σ×[0, 1] embedded in S3. We can identify a loop α with α×{0}
and denote its positive push α×{1} by α+. The Seifert matrix of S is then the matrix
whose (i, j) entry is lk(αi, α

+
j ), the linking number between the ith generator and the

positive push of the jth generator.

α

α+

α

α+

Figure 10: A positive push of a loop on a Seifert surface for the Hopf link

Definition 8.5 (Signature). Recall that the signature of a symmetric matrix is de-
fined to equal the number of positive minus the number of negative eigenvalues,
counting multiplicities. We define the signature of a link L, denoted σ(L), to equal
the signature of the matrix A+ AT , where A is a Seifert matrix for L.

Definition 8.6 (Determinant). Let A be a Seifert matrix for a link L. Following the
conventions of [5], we define the signed determinant of L, denoted det(L), to equal
the determinant of the matrix −i(A+ AT ).

Definition 8.7 (Murasugi nullity). Let A be a Seifert matrix for a link L. We define
the Murasugi nullity of L to be the nullity of the matrix A.

Definition 8.8 (Connected sum of links). Let L1 and L2 be oriented links. We define
L1#L2 to be the result of performing the connected sum operation on some component
of L1 and some component of L2. In general, different choices of components may
result in non-isotopic links. For our purposes, L1#L2 may be taken to be any one of
these choices.
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Definition 8.9 (Split link). A link L is called split if it is isotopic to a disjoint union
of two links that share no crossings.

Definition 8.10 (Prime link). A non-split link L is prime if it is not isotopic to a
connected sum of two nontrivial links.

Definition 8.11 (Writhe). The writhe of an oriented link L is the number of positive
crossings minus the number of negative crossings. A crossing is determined to be
positive or negative based on the following rule:

The left figure is a positive crossing and the right figure is a negative crossing.
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