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Background

Definition

A knot is a smooth embedding of S1 into S3. An n-component link is a smooth
embedding of a disjoint union of n circles into S3.

The unknot 2-component unlink

Trefoil knot 2-component torus link
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Background

We typically use planar diagrams to depict knots.

Planar diagram of the trefoil knot
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Link Equivalence

What does it mean for two links to be the same?

Definition
Two links are isotopic if there is a way to deform one link into the other without
passing the strands through each other.

I II III

Reidemeister moves
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Cobordism

Definition

A cobordism between two links L1 and L2 is a surface in S3 × [0, 1] which equals
L1 on S3 × {0} and L2 on S3 × {1}.

The unknot is cobordant to the two-component unlink.
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Cobordism, continued

Theorem
Any cobordism may be viewed as a sequence of births, saddles, and deaths.

birth saddle death

Corresponding surface
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Concordance

Definition
A concordance between knots is a cobordism which is topologically
homeomorphic to the cylinder S1 × [0, 1].

A cobordism from the unknot to
itself which is not a concordance

A cobordism from the unknot to
itself which is a concordance
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Concordance

A concordance between n-component links is a cobordism which is topologically
homeomorphic to the disjoint union of n cylinders.
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Slice Links

Definition
A slice link is an n-component link which is concordant to the n-component
unlink.

saddle

death

This is a saddle move followed by
a death, so topologically the surface
looks like this:

K

unknot

Du Preez, Silva, Yu Texas A&M University 11 / 66



Slice Links

Definition
A slice link is an n-component link which is concordant to the n-component
unlink.

saddle

death

This is a saddle move followed by
a death, so topologically the surface
looks like this:

K

unknot

Du Preez, Silva, Yu Texas A&M University 11 / 66



Ribbon Links

Definition
A ribbon link is a slice link for which there exists a concordance to the unlink
that has no births.

saddle

death

This is ribbon as well!
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Ribbon Links

Theorem

An n-component link L ⊆ S3 is ribbon if and only
if it is the boundary of a collection of n disks im-
mersed in S3 such that all of its self-intersections
are of the following form:

Ribbon Singularity

Our knot from earlier

Knot 61
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Slice and Ribbon

All ribbon links are slice (by definition).

Question

Are all slice links ribbon? This is known as the slice-ribbon conjecture and is a
famous unsolved problem.
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Link Invariants

It’s easy to prove that two links are isotopic or concordant. Link invariants are
used to tell them apart.

1 Linking Matrix

2 Signature

3 Jones Polynomial

4 Alexander Module

Because slice and ribbon links are concordant to the unlink, these invariants give
rise to slice obstructions and ribbon obstructions.

Du Preez, Silva, Yu Texas A&M University 16 / 66



Link Invariants

It’s easy to prove that two links are isotopic or concordant. Link invariants are
used to tell them apart.

1 Linking Matrix

2 Signature

3 Jones Polynomial

4 Alexander Module

Because slice and ribbon links are concordant to the unlink, these invariants give
rise to slice obstructions and ribbon obstructions.

Du Preez, Silva, Yu Texas A&M University 16 / 66



Link Invariants

It’s easy to prove that two links are isotopic or concordant. Link invariants are
used to tell them apart.

1 Linking Matrix

2 Signature

3 Jones Polynomial

4 Alexander Module

Because slice and ribbon links are concordant to the unlink, these invariants give
rise to slice obstructions and ribbon obstructions.

Du Preez, Silva, Yu Texas A&M University 16 / 66



Linking Matrix

Definition
Given two oriented components of a link K1 and K2, their linking number,
denoted lk(K1,K2), encodes the number of times K1 wraps around K2. It may
be computed by fixing a link diagram and taking the number of positive minus the
number of negative overcrossings of K1 over K2.

K2

K1

K2

K1

positive
overcrossing

negative
overcrossing
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Linking Matrix

+1

+1

K2

K1
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Linking Matrix

Definition
Given a link L = K1 ⊔ · · · ⊔Kn, the linking matrix of L is the n× n matrix
whose entry in the ith row and jth column equals lk(Ki,Kj).

Example

Linking matrix =

 0 −2 1
−2 0 2
1 2 0


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Linking Matrix

It is known that linking matrix is a concordance invariant.

...

The n-component unlink has linking matrix 0.

Theorem (linking matrix slice obstruction)

Let L be a slice link. Then its linking matrix is 0.
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Signature

Definition

Given a link L ⊆ S3, a Seifert surface for L is an orientable non-self-intersecting
2d surface in S3 whose boundary is L.

Theorem
Every link admits a Seifert surface. This surface is in general not unique.

Example
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Signature

From a Seifert surface we can create something called a Seifert Matrix.

Example

One possible Seifert matrix =

[
1 −1
0 1

]
.

This is also not unique!

Du Preez, Silva, Yu Texas A&M University 22 / 66



Signature

Note that a Seifert matrix, M , is always integer-valued, so M +MT is a real
symmetric matrix.

Definition

Let M be a Seifert matrix for a link L. The signature of L, denoted σ(L), is
defined to be the number of positive eigenvalues minus the number of negative
eigenvalues of the matrix M +MT , counting multiplicities. That is,

σ(L) = # positive eigenvalues −# negative eigenvalues

Du Preez, Silva, Yu Texas A&M University 23 / 66



Signature

Example

Our Trefoil knot from earlier had

M +MT =

[
2 −1
−1 2

]
.

So σ(Trefoil) = 2

σ(L) is also invariant under concordance.

Theorem (signature slice obstruction)

If a link L is slice, then σ(L) = 0.
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The Link Exterior

S3

L

We call S3 \ L the exterior (or link complement) of L.
This is an isotopy invariant of links.

We want to consider the fundamental group π1(S
3 \ L).
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The Alexander Module

Given an n-component link L, let E = S3 \ L be its exterior. Recall that the
abelianization of π1(E) is H1(E).

Proposition

For an n-component link L we have that H1(E) ∼= Zn.

We will consider the universal
abelian cover of E, denoted Eγ

with covering map p : Eγ →
E. By definition, the deck trans-
formation group of this covering
space is H1(E).

Figure: The universal abelian
cover of the exterior of the
2-component unlink
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The Alexander Module

Fix a point b ∈ E and consider the relative homology group H1(Eγ , p
−1(b)). The

deck transformation group H1(E) acts on H1(Eγ , p
−1(b)) by sending loops

between sheets of Eγ .

Thus, H1(Eγ , p
−1(b)) is a module over the group ring ZH1(E). This is called the

Alexander module of L, denoted A(L).
• Note that Λ := ZH1(E) is isomorphic to Z[t1, . . . , tn, t−1

1 , . . . , t−1
n ].
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The Alexander Module

Definition (Alexander nullity)

The Alexander nullity of a link L, denoted β(L), is rankA(L)− 1.

β(L) ≤ n− 1 for any n-component link. When β(L) = n− 1 we say that it has
full Alexander nullity.

This is is a concordance invariant of links. Since the n-component unlink has full
nullity, we have

Theorem (Alexander nullity slice obstruction)

If a link L is slice, then L has full Alexander nullity.

Du Preez, Silva, Yu Texas A&M University 28 / 66



From these invariants, we get our slice obstructions:

Slice Obstructions
Let L be an n-component slice link. Then all of the following hold:

The linking matrix of L is 0.

The signature of L is 0.

L has full Alexander nullity, meaning β(L) = n− 1.
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The Jones Polynomial

The Jones polynomial is a link invariant that encodes combinatorial information of
a link.

Definition
Let D be a diagram for a link L. The Kauffman bracket of D is a Laurent
polynomial ⟨D⟩ ∈ Z[A,A−1] which satisfies the following recursive relations:

⟨⃝⟩ = 1.

⟨ ⟩ = A⟨ ⟩+A−1⟨ ⟩.
⟨D ⊔⃝⟩ = ⟨D⟩ · (−A2 −A−2)
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Example

We begin with a link, D, and apply the skein relation to each crossing as follows:

A

A A

A−1

A−1 A−1

We know ⟨⃝⟩ = 1 and ⟨⃝2⟩ = (−A2 −A−2). Thus, we get

⟨D⟩ = A2(−A2 −A−2) + 1(1) + 1(1) +A−2(−A2 −A−2)

= −A4 −A−4

Du Preez, Silva, Yu Texas A&M University 31 / 66



Jones Polynomial

We note that the Kauffman bracket is NOT invariant under Reidemeister I
moves. A correction factor is added to account for this.

Definition

Let D be a diagram for a link L. We define the writhe of D, denoted wr(D) as:

wr(D) = # positive crossings−# negative crossings

Definition
Let L be a link and D be any diagram forL. The Jones polynomial of L is given
by:

VL = (−A3)−wr(D)⟨D⟩

This is an isotopy invariant of links. Most literature substitutes q = −A−2 so that
VL(q) ∈ Z[q, q−1].
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Jones Polynomial

We note that the Kauffman bracket is NOT invariant under Reidemeister I
moves. A correction factor is added to account for this.

Definition

Let D be a diagram for a link L. We define the writhe of D, denoted wr(D) as:

wr(D) = # positive crossings−# negative crossings

Definition
Let L be a link and D be any diagram forL. The Jones polynomial of L is given
by:

VL = (−A3)−wr(D)⟨D⟩

This is an isotopy invariant of links. Most literature substitutes q = −A−2 so that
VL(q) ∈ Z[q, q−1].

Du Preez, Silva, Yu Texas A&M University 32 / 66



Jones Polynomial

We note that the Kauffman bracket is NOT invariant under Reidemeister I
moves. A correction factor is added to account for this.

Definition

Let D be a diagram for a link L. We define the writhe of D, denoted wr(D) as:

wr(D) = # positive crossings−# negative crossings

Definition
Let L be a link and D be any diagram forL. The Jones polynomial of L is given
by:

VL = (−A3)−wr(D)⟨D⟩

This is an isotopy invariant of links. Most literature substitutes q = −A−2 so that
VL(q) ∈ Z[q, q−1].

Du Preez, Silva, Yu Texas A&M University 32 / 66



Eisermann’s Condition

Definition

Given a link L, its Jones nullity is the multiplicity of the factor (q + q−1) in its
Jones polynomial.

For n-component links, the Jones nullity is bounded from above by n− 1.

In 2008, Eisermann discovered a ribbon obstruction that uses the Jones
polynomial:

Theorem (Eisermann, 2008)

Every n-component ribbon link has Jones nullity n− 1. In this case, we say L has
full Jones nullity.

Question

Is Eisermann’s condition a slice obstruction?
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Our Conjecture

After testing all links of up to 14 crossings, we make the following conjecture:

Conjecture

Let L be a link with n ≥ 2 components. If L has full Alexander nullity, then

L has linking matrix 0.

L has even signature.

L has full Jones nullity.

It is sufficient to check a smaller class of links called prime links, which we now
define.
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Connected Sums

Connected sum is an operation between two knots that produces a new knot,
denoted K1#K2. It is well defined up to isotopy.

K1 K2 K1#K2

Connected sum of the trefoil with its mirror image

The connected sum of two links is made by performing a connected sum between
one component from each link. This depends on the choice of components.
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Connected Sums

Definition
A link L is called split if it is a disjoint union of two links that do not share any
crossings.

Definition
A link L is called prime if it is non-split and not a connected sum of two
non-trivial links.

Split link
Non-prime link

Du Preez, Silva, Yu Texas A&M University 37 / 66



Connected Sums

It turns out most properties behave nicely under connected sums:

Connected sum maintains linking matrix zero

Signature is additive. That is, σ(L1#L2) = σ(L1) + σ(L2).

The Jones polynomial is multiplicative: VL1#L2
(q) = VL1

(q) · VL2
(q).

In particular, Jones nullity is additive.

We are able to prove the following:

Lemma
Alexander nullity is additive under connected sum. That is, for any links L1 and
L2 we have β(L1#L2) = β(L1) + β(L2).

Therefore,

Theorem
If there exists a counter-example to our conjecture, then there exists a prime
counter-example.
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Connected Sums

Lemma
Alexander nullity is additive under connected sum. That is, for any links L1 and
L2 we have β(L1#L2) = β(L1) + β(L2).

Proof idea:

1 Use the Wirtinger presentation to show that π1(S
3 \ L1#L2) is a union of

presentations for π1(S
3 \ L1) and π1(S

3 \ L2) with one additional relation.

2 Use Fox calculus to compute a presentation matrix for A(L1#L2) in
terms of the presentation matrices of A(L1) and A(L2).

3 Compute the rank of the matrix to get β(L1#L2).

Du Preez, Silva, Yu Texas A&M University 39 / 66



Presentation Matrix

It’s often easier to analyze the Alexander module through a presentation matrix.
(Recall that A(L) is a module over Λ := H1(E))

Definition

A presentation matrix for A(L) is a matrix P with entries in Λ for which

Λm P−→ Λn → A(L) → 0

is an exact sequence. Equivalently A(L) ∼= cokerP .

Note: the Alexander nullity β(L) = #rowsP − rankP − 1.

This can be computed from a diagram of the link!
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Wirtinger Presentation

π1(S
3 \ L) can be computed from a link diagram of L.

Generators correspond to loops around arcs on the diagram:

a

b

c
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Wirtinger Presentation

Relations correspond to crossings:

a

c b

ac

cb

=

Note that the relation can also be written as a = cbc−1.
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Wirtinger Presentation

Together, these give us a presentation of π1(S
3 \ L) called the Wirtinger

presentation.

The presentation of the trefoil would be:

π1(S
3 \ trefoil) = ⟨a, b, c | a = cbc−1, b = aca−1, c = bab−1⟩.

Note the last relation can be derived from the previous two:

b = aca−1

= (cbc−1)ca−1

= cba−1

=⇒ c = bab−1
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Wirtinger presentation

In fact, this is true in general: In a Wirtinger presentation, each relation is
dependent on all of the other ones.

Every non-split, non-trivial link diagram has the same number of arcs as crossings,
so

# relations = # generators− 1
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Fox derivative

We now need a way to use π1(E) to get information about the universal abelian
cover.

Definition
Let G be a free group with generators x1, . . . , xn. We define the Fox derivative
with respect to xi to be the map ∂

∂xi
: G → ZG given by the following rules:

∂
∂xi

(xj) = δij
∂

∂xi
(uv) = ∂

∂xi
(u) + u ∂

∂xi
(v) for any u, v ∈ G
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Fox derivative intuition

The free group on two
generators ⟨a, b⟩ is the
fundamental group of a
bouquet of two circles.
Call this space E.

b a

Consider the universal cover of this space (call it

Ẽ) and fix lifts ã and b̃ with the same base point:

b̃

ã
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Fox derivative intuition

b a

The deck group of Ẽ
may be identified with
π1(E) = ⟨a, b⟩.

We may view the paths ã
and b̃ as 1-cells and let a
and b act on ã and b̃ as
deck transformations.

b̃

ã
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Fox derivative intuition

b a

The idea of the Fox
derivative is that given a
loop u ∈ π1(E) = ⟨a, b⟩,
the lift of u to Ẽ is equal
to

∂u
∂a ã+ ∂u

∂b b̃,

viewed as a 1-chain in Ẽ.

b̃

ã
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Fox derivative intuition

For example, consider
the lift of the word ab.
This corresponds to the
chain in Ẽ highlighted in
blue:

From the picture we can
see that the lift is ã+ab̃.
This corresponds to the
rule

∂
∂a (uv) =

∂
∂a (u)+u ∂

∂a (v).

b̃

ã
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Fox derivative

The Fox derivative gives us information about the universal cover. We use the
abelianization map γ : π1(S

3 \ L) → H1(S
3 \ L) to extract information about the

universal abelian cover. Let G be the free group on the generators of π1(S
3 \ L),

then we have maps

G
∂/∂x−−−→ ZG γ∗−→ Λ

Take the Fox derivative of all relations of π1(S
3 \L) with respect to all generators

to get:

P =

γ∗(∂r1/∂x1) · · · γ∗(∂rp−1/∂x1)
...

. . .
...

γ∗(∂r1/∂xp) · · · γ∗(∂rp−1/∂xp)


Theorem (Kawauchi, 7.1.5)

P defines a map Λp−1 → Λp such that cokerP ∼= A(L). In other words, P is a
presentation matrix for A(L).
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Fox Derivative

Example

Fundamental and homology groups:

π1(E) = ⟨a, b | aba−1b−1⟩ H1(E) = ⟨t1⟩×⟨t2⟩

Fox derivatives:

∂

∂a
(aba−1b−1) = 1− aba−1

∂

∂b
(aba−1b−1) = a− aba−1b−1

Abelianization:

γ∗(1− aba−1) = 1− t2, γ∗(a− aba−1b−1) = t1 − 1.

Presentation matrix:

P =

[
1− t2
t1 − 1

]
, β(L) = 2− 1− 1 = 0.
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Connected Sums

Lemma
Alexander nullity is additive under connected sum. That is, for any links L1 and
L2 we have β(L1#L2) = β(L1) + β(L2).

Using these tools, we were able to show that the presentation matrix for
A(L1#L2) is of the form:

P# =

[
P1 0 e1
0 P2 −f1

]
from which additivity of the nullity followed.
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Some results

We give a result on the Jones nullity of 2-component slice links.

Theorem

Let L be a 2-component link with even signature. Then q + q−1 divides VL(q). In
other words, L has full Jones nullity.

Corollary

Every 2-component slice link has full Jones nullity
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Conjectures, continued

We continue to attempt to expand our previous theorem. Proving either of the
following conjectures will show that all slice links have full Jones nullity.

Conjecture

Alexander nullity is a lower bound for Jones nullity.

Conjecture

Jones nullity is a concordance invariant.
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Satellite links

Definition
Let K be a knot, and let P be a link embedded in a solid torus. We define a
satellite of K with pattern P to be the image of P under an embedding of the
solid torus onto a tubular neighborhood of K.

The embedding in the above definition is required to “have no twists” in the sense
that it preserves linking number.

Pattern

Companion Link

Satellite
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Satellite links

We can prove our conjecture is true for a specific class of satellite links:

Theorem
Let L be a satellite link whose companion is a knot and whose pattern is an
n-component unlink. Then L satisfies the following:

L has full Alexander nullity

L has even signature

Cable Bing double

Recall from earlier that a 2-component link with even signature has full Jones
nullity.
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Satellite links

Proof outline.
Full Alexander nullity:

K2

K1

a2

a1

t1

K0

A

L

b2

b1

b3 b4
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Satellite links

Proof outline.
Full Alexander nullity:



r1 · · · rp−1 s1 · · · sn+d−1 [m] [ℓ]

b1 γ(∂r1∂b1
) · · · γ(

∂rp−1

∂b1
) 0 · · · 0 γ(∂([m])

∂b1
) γ(∂[ℓ]∂b1

)
...

...
. . .

...
...

. . .
...

...
...

bp γ(∂r1∂bp
) · · · γ(

∂rp−1

∂bp
) 0 · · · 0 γ(∂[m]

∂bp
) γ(∂[ℓ]∂bp

)

t1 0 · · · 0 γ(∂s1∂t1
) · · · γ(∂sn+d−1

∂t1
) γ(∂[m]

∂t1
) γ(∂[ℓ]∂t1

)
...

...
. . .

...
...

. . .
...

...
...

td 0 · · · 0 γ(∂s1∂td
) · · · γ(∂sn+d−1

∂td
) γ(∂[m]

∂td
) γ(∂[ℓ]∂t1

)

a1 0 · · · 0 0 · · · 0 γ(∂[m]
∂a1

) 0
...

...
. . .

...
...

. . .
...

...
...

an 0 · · · 0 0 · · · 0 γ(∂[m]
∂an

) 0



.
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Satellite links

Proof outline.
Even signature:

K4K3

K2K1

K Σ
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Torus links

Definition (Torus knot)

Let K1 ⊔K2 be the Hopf link, and let N(K1) be a tubular neighborhood of K1

disjoint from K2. For coprime integers p and q, we define the (p, q) torus knot,
denoted T (p, q), to be the knot lying on the boundary of N(K1) (a torus) for
which (T (p, q),K1) = q and (T (p, q),K2) = p.

T (2, 3)
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Torus links

Definition (Torus link)

Let p and q be coprime integers, and let n be a positive integer. Then we define
the (p, q) torus n-link, denoted T (np, nq), to be the link consisting of n parallel
copies of T (p, q) lying on a torus embedded in S3.

Recall this diagram from the beginning:

T (2, 8)
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Torus links

Nontrivial torus links have nonzero linking matrix, so our conjecture would have us
believe that they don’t have full Alexander nullity. We can prove this:

Theorem
Let p and q be nonzero coprime integers, and let n ≥ 2. Then the torus link
T (np, nq) has Alexander nullity 0.

Proof outline.

tpqn −1
tqn−1

tpqn −1
tqn−1

tpqn −1
tqn−1

· · · tpqn −1
tqn−1

− tpqn −1
tpn−1

−t1
tpqn −1
tpn−1

−t2
tpqn −1
tpn−1

· · · −tn−1
tpqn −1
tpn−1

0 tpqn − 1 0 · · · 0
0 0 tpqn − 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · tpqn − 1


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Eisermann asked whether the Jones nullity of every link is equal to its Murasugi
nullity, null(L). Using the SnapPy Python library, we have found the following
minimal counterexamples:

The 3-component prime link “L12n1998” has Jones nullity 1 and Murasugi
nullity 2. (it also has Alexander nullity 0).

The 4-component prime link “L14n63006” has Jones nullity 2 and Murasugi
nullity 1. (it also has Alexander nullity 0).

L12n1998 L14n63006
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Conclusion

1 Conjectured that even signature and full Jones nullity follow from full
Alexander nullity

2 Proved the sufficiency of checking prime links
3 Proved part of this conjecture in specific cases:

2-component links
Unlinked satellites
Torus links

Future Work:

Prove full Jones nullity for unlinked satellites

Expand the conjecture to more classes of links
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Thank You!
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