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Abstract

In many applications, including in ecology and pharmacokinetics, linear compartmental mod-
els are used to model transfer between ”compartments” which may represent populations, drug
concentration, etc. Such models are represented by directed graphs in which the edges represent
the transfers between compartments. An important feature of such models is the identifiability
degree, which summarizes the extent to which it is possible to recover the transfer rates from
noiseless experimental data. More precisely, the identifiability degree of a parameter is 1 if the
transfer rate can be recovered uniquely, and is greater than 1 if the transfer rate can be recovered
only up to a finite set (this size is equal to the degree).

In this paper, we investigate the effects of adding leaks (edges directed out of the model)
on the identifiability degree. We show that in a model represented by a strongly connected
graph, if exactly one leak is in the same compartment as an output, then that leak parameter
is uniquely identifiable. We investigate improvements to this result, looking at the preservation
of the identifiability degree of the non-leak parameters and the applicability to non-strongly
connected graphs, like in the case of directed path models. Finally, we build on this result to
find the identifiability degree of cycle and mammillary models.

1 Introduction

In this paper, we will investigate the identifiability of linear compartmental models, models that
are commonly used and described by a parameterized system of linear ODEs. These models have
applications in pharmacokinetics, ecology, and more to understand the interactions between body
systems, populations, etc., which we call compartments.

We will begin by giving a background of linear compartmental models, describing the graphs
that represent them, the ODEs that represent them, and the input-output equation and coefficient
map [1]. Then, we will define identifiability, a foundation for the remainder of the paper, along with
identifiability degree. In section 2, we discuss a method to prove the unidentifiability of parameters
in linear compartmental models.

In section 3, we prove a main result of parameter identifiability. We show that in a strongly
connected model with the output and leak in the same compartment, the leak parameter will be
globally identifiable (Proposition 4.5). We also conjecture further generalizations of this result.

In section 5, we prove the identifiability degree of some classes of cycle and mammillary mod-
els. In particular, we develop a method using the coefficient map which enables us to prove the
identifiability degree of all cycle models with at most one leak, as well as the identifiability degree
of the parameters and leaks therein.
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In the final section, we define tree models as seen in [3] and generalize a formula conjectured in
[3] for the identifiability degree of tree models (Conjecture 6.3).

Remark 1.1. Many of our results were enabled by a database we extended [4], originally created
by Alexis Edozie, Odalys Garcia-Lopez, and Viridiana Neri.

2 Background

Often, biological systems can be represented in a directed graph G with vertices representing organs
or body systems and the edges between these vertices representing the rate of transfer between those
vertices, denoted as (VG, EG) ∈ G. We write an edge j → i ∈ EG as kij and a leak, a rate of flow
leaving the system, as k0i.

A linear compartmental model contains input edges (i.e. the input of a drug into the body),
output edges (the concentration of the drug), and can contain leak edges (the drug moving from the
system or being broken down) directed outwards from a vertex. We can define a linear compart-
mental model as M = (G, In,Out, Leak) where In, Out, and Leak are the sets of compartments
containing an input, output, and leak, respectively. The size of the model is given by n = |VG|.
Three types of models, catenary, cycle, and mammillary, are given in Figures 1, 2, and 3, respec-
tively. Any of these models can contain leaks from any compartment, labeled as k0i.
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Figure 1: A catenary (bidirected path graph) model has a bidirected graph with compartments 1
through n.
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Figure 2: A cycle model has a directed graph with compartments 1 through n.

Following the notation of [1], a model with n vertices produces the n×n matrix, A, with entries
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Figure 3: A mammillary (star graph) model is a bidirected graph with compartments 1 through n
in which the input and output are always in the same compartment with each ”branch” containing
one compartment.

as follows.

Ai,j =



−
∑

m:i→m∈EG

kmi, i = j, i /∈ Leak

−k0i −
∑

m:i→m∈EG

kmi, i = j, i ∈ Leak

kij , i ̸= j, (j, i) ∈ EG

0, i ̸= j, (j, i) /∈ EG

Using this matrix, the model defines the following ODE system where ui(t) and yi(t) are the
concentration of input and output compartments, respectively, and x(t) = (x1(t), x2(t), ..., xn(t)) is
the vector of concentrations of all compartments:

dx

dt
= Ax(t) + u(t),

yi(t) = xi(t) for all i ∈ Out

Proposition 2.1. [1, Proposition 2.8] Let M = (G, In,Out, Leak) be a linear compartmental
model with n compartments and at least one input. Define ∂I to be the n × n matrix in which
every diagonal entry is the differential operator d

dt and every off-diagonal entry is 0. Let A be the
compartmental matrix. Then, the following equations are input-output equations of M:

det(∂I −A)yi =
∑
j∈In

(−1)i+jdet((∂I −A)j,i)uj (1)

Remark 2.2. In the right hand side of (1), det(∂I−A)j,i represents the determinant of the matrix
∂I − A with the jth row (the input compartment) and the ith column (the output compartment)
removed.

Example 2.3. The model in Figure 4 produces the following A matrix:

A =

−k21 k12 0
k21 −k02 − k12 − k32 k23
0 k32 −k23


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Figure 4: A linear compartmental model with n = 3, In = Out = {1}, and Leak = {2}.

which we can use to find our input-output equation (1) for M

det

 d
dt + k21 −k12 0

−k21
d
dt + k02 + k12 + k32 −k23

0 −k32
d
dt + k23

 = det

(
d
dt + k02 + k12 + k32 −k23

−k32
d
dt + k23

)

y
(3)
1 +(k02+k12+k21+k23+k32)y

(2)
1 +(k02k21+k02k23+k12k23+k21k23+k21k32)y

′
1+(k02k21k23)y1

= u
(2)
1 + (k02 + k12 + k23 + k32)u

′
1 + (k02k23 + k12k23)u1

2.1 Identifiability

An important aspect of linear compartmental models is understanding which parameters (kij) have
solutions. Specifically, we are interested in the number of solutions we can find for each param-
eter, the identifiability degree. These are defined more carefully below. In order to understand
identifiability, it is important to define the following.

Definition 2.4. (Coefficient Map) Let M be a model with p parameters. Let Σ be the set of input-
output equations forM. The coefficient map of Σ is the function c̄ : Rp → Rl that is the vector of all
nonmonic coefficient functions of every differential monomial term in every input-output equation
in Σ, where l is the number of nonmonic coefficients.

Example 2.5. (Example 2.3 cont.) Returning to the model in Figure 4 with In = Out = {1} and
Leak = {2}, we use the input-output equation computed in Example 2.3 to identify the coefficient
map of M, c̄ : R5 → R5

k02
k12
k21
k23
k32

 7→ c̄ =


k02 + k12 + k21 + k23 + k32

k02k21 + k02k23 + k12k23 + k21k23 + k21k32
k02k21k23

k02 + k12 + k23 + k32
k02k23 + k12k23


Definition 2.6. (Model Identifiability)[1, Definition 2.13] Consider a strongly connected linear
compartmental modelM = (G, In,Out, Leak) with at least one input. Assume that |EG|+|Leak| ≥
1. Let c̄ : R|EG|+|Leak| → Rm be the coefficient map arising from the input-output equations (1).
Then M is:
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(i) generically locally identifiable if, outside a set of Lebesgue measure zero, every point in
R|EG|+|Leak| has an open neighborhood U for which the restriction c|U : U → Rm is one-to-one;
and
(ii) unidentifiable if c is generically infinite-to-one.

Remark 2.7. A model M is strongly connected if the directed graph G representing the model is
strongly connected (that is, every pair of vertices is mutually reachable).

Now that identifiability in general is understand, we can define the identifiability degree of both
individual parameters and whole models.

Definition 2.8. (Identifiability Degree of a Parameter) The identifiability degree of a parameter
kij is m if exactly m parameter values map to a generic input-output data vector.

Definition 2.9. (Identifiability Degree of a Model)[6] The identifiability degree of a model M is
m if exactly m sets of parameter values map to a generic input-output data vector.

Remark 2.10. A model is said to be globally identifiable if m in Definition 2.9 is equal to 1.

To determine if a model is identifiable, you can solve the coefficient map for each parameter
or determine the rank of the Jacobian matrix, Jac(c̄). The model is generically locally identifiable
if and only if Jac(c̄) has full rank (or rk(Jac(c̄)) = P , where P is the number of parameters) [1,
Proposition 2.14].

1 2

5

7 8

k21

k12 k02

Input Output

Figure 5: A catenary model with n = 3, In = {1}, and Out = Leak = {2}.

Example 2.11. Consider the model in Figure 5. For this model we can obtain the following
coefficient map:

(k02, k12, k21) 7→ c̄ = (k02 + k21 + k12, k21k02, k21)

Since we can determine k21 uniquely from the coefficient map (c̄) it is globally identifiable.
k02 is in the coefficient k21k02, and we know k21, so k02 can also be determined uniquely.
k12 is globally identifiable for similar reasoning using the coefficient k02 + k21 + k12.
Since all of the parameters in the model are globally identifiable, we call the model globally

identifiable.

Remark 2.12. In Example 2.11, if one of the parameters was instead locally identifiable, the
model as a whole would be locally identifiable. Similarly, if one of the parameters was instead
unidentifiable, the model as a whole would be unidentifiable.
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3 Parameter Unidentifiability

While model identifiability is a generally well-understood problem, it is difficult to determine the
identifiability degree (or unidentifiability) of individual parameters within the model. The uniden-
tifiability of parameters, especially, is an elusive problem. Despite this, we develop the method
exhibited in Example 3.1 to prove the unidentifiability of parameters in some unidentifiable models.

When unidentifiability of a model is known, by definition, we are guaranteed that one of the
parameters in that model is itself unidentifiable. Using this fact, we often can prove a relationship
between parameters of some models which would guarantee that, if one parameter is identifiable,
then every parameter must be identifiable. We illustrate this method using the following example:

Example 3.1. Consider the model pictured in Figure 6.

1 2 3

7 8

k21

k12

k32

k23

Input Output

Figure 6: 3-compartment catenary model with in-
put in Compartment 1, output in Compartment
3, and no leaks

It is routine to determine that this model has coefficient map c : R4 → R3 given by:
k12
k21
k23
k32

 7→

c1
c2
c3

 =

 k12 + k21 + k23 + k32
k12k23 + k21k23 + k21k32

k21k32


From here, it is possible to show that being able to identify any of the 4 parameters will guarantee
the (local) identifiability of all parameters in the model. We assume that all parameters are posi-
tive, so the result will hold generically.

First, suppose k21 or k32 is identifiable. Then, c3 = k21k32 implies that both k21 and k32 are
identifiable. From here, it is straightforward to check that

c2 − c3 = (k12 + k21)k23 = c1k23 − k223 − k23k32 (2)

So, we obtain the quadratic equation

k223 + (k32 − c1)k23 + (c2 − c3) = 0

and conclude that k23 is generically locally identifiable if k32 is identifiable. With this, 3 of our
total 4 parameters are identifiable, and so the last parameter is also identifiable.

It remains to show that if k12 or k23 are identifiable, then every parameter must be identifiable.
We begin with k23. Indeed, it follows from equation 2 that if k23 is identifiable, then so is k32, and
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hence by the argument above that every parameter is identifiable.

To develop the k12 case, consider the following equations:

c1k21 = (k12 + k21)k21 + k21k23 + k21k32

c2 = k12k23 + k21k23 + k21k32

Then, we obtain the equality:

c1k21 − (k12 + k21)k21 = c2 − k12k23

Notice that we can solve for k23 in terms of k12 and k21, so

k23 =
c2 + (k12 + k21)k21 − c1k21

k12

Finally, substituting this value for k23 in the equation (k12 + k21)k23 + c3 = c2 yields a polynomial
equation for k21 in terms of k12, so we conclude that the identifiability of k12 implies that of k21,
and hence of each parameter as discussed earlier.

Recall, finally, that this model is unidentifiable, and has at least one unidentifiable parameter
as a result. But, if any one parameter is identifiable, then all four of the model’s parameters
are identifiable. So, to avoid contradiction, we conclude that each of the model’s parameters are
unidentifiable.

Remark 3.2. We can use the method shown in Example 3.1 to prove the unidentifiability of a
subset of parameters in a model, also. While the proof will be omitted, the model pictured in
Figure 7 has coefficient map:

c1
c2
c3
c4

 =


k03 + k12 + k21 + k23 + k32

k03(k12 + k21 + k32) + k12k23 + k21k23 + k21k32
k03k21k32
k21k32


Here,

c3
c4

= k03, so k03 is globally identifiable. Despite this, readers may verify using methods similar

to those in Example 3.1 that each of the other parameters in the model is unidentifiable.

4 Identifiability of Leak Parameters

Definition 4.1. (Graphs associated to linear compartmental models) [1, Section 2.2] We define
the following auxiliary graphs arising from a linear compartmental model M = (G, In,Out, Leak).

• G̃: the leak-augmented graph [6] is obtained from G by adding a new node, labeled by 0 and
referred to as the leak node, and for every j ∈ Leak, adding an edge j → 0 with label k0j

• G̃∗
i : obtained from G̃ by removing all outgoing edges from some node i

Example 4.2. The model in Figure 8 has the corresponding graph G, as shown in Figure 9. Using
G, it is simple to obtain G̃ by adding the node 0 and the edge 4 → 0. Next, to obtain G̃∗

i we remove
the outgoing edges from node 4 (in this case, we chose i to be 4).
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Figure 7: 3-compartment catenary model with in-
put in Compartment 1, output and leak in Com-
partment 3
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Figure 8: Linear compartmental model with In = {1} and Out = Leak = {4}. This model is used
to obtain the graphs in Figure 9.
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Figure 9: Graphs obtained from the model in Figure 8.

Definition 4.3. (Spanning incoming forest) [1, Section 2.2] For a graph, a spanning incoming
forest is a spanning subgraph for which the underlying undirected graph is a forest (has no cycles)
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and each node has at most one outgoing edge. ”Spanning” refers to the fact that every vertex of
the graph is included in the forest, which can include isolated vertices.

For a graph H:

• Fj(H) is the set of all spanning incoming forests of H with exactly j edges.

• Fk,ℓ
j (H) is the set of all spanning incoming forests of H with exactly j edges, such that some

connected component (of the underlying undirected graph) contains both of the vertices k
and ℓ.

Theorem 4.4. [1, Theorem 3.1] Consider a linear compartmental model M = (G, In,Out, Leak)
with at least one input. Let n denote the number of compartments. Write the input-output equation
(1) (for some i ∈ Out) as follows:

y
(n)
i + cn−1y

(n−1)
i + · · ·+ c1y

′
i + c0yi =

∑
j∈In

(−1)i+j(dj,n−1u
n−1
j + · · ·+ dj1u

′
j + dj0uj) (3)

Then the coefficients of the input-output equation (3) are as follows:

ck =
∑

F∈Fn−k(G̃)

πF for k = 0, 1, ..., n− 1

dj,k =
∑

F∈Fji
n−k−1(G̃

∗
i )

πF for j ∈ In and k = 0, 1, ..., n− 1

Proposition 4.5. Assume n ≥ 3. For an n-compartment strongly connected model with In = {j}
and Out = Leak = {i}, the leak parameter, k0i, is globally identifiable.

Proof. We want to show that c0 = k0idj0, where c0 is the last coefficient on the left hand side of
the input output equation (3) and dj0 is the last coefficient on the right hand side of (3).

By definition, Fn(G̃) is the set of all spanning incoming forests of G̃ with n edges. From
Theorem 4.4, we have

c0 =
∑

F∈Fn(G̃)

πF

We know that c0 is the sum of products of the edges in F ∈ Fn(G̃). In the cases we are
considering, for c0, |Fn(G̃)| = 1 because, with there being a leak out of i in G̃, there is only one
possible forest we are able to obtain that is a spanning incoming forest. Since this forest is a
spanning incoming forest of G̃, i can have only one outgoing edge which is, in this case, the leak
edge k0i.

By definition, F ji
n−1(G̃

∗
i ) is the set of all spanning incoming forests of G̃∗

i with n−1 edges. From
Theorem 4.4, we have

dj0 =
∑

F∈Fji
n−1(G̃

∗
i )

πF

We know that dj0 is the sum of products of the edges of F ∈ F ji
n−1(G̃

∗
i ). In the cases we are

considering, for dj0, |F ji
n−1(G̃

∗
i )| = 1 (for similar reasoning as for c0), and since this is a spanning

incoming forest of G̃∗
i , i will have no outgoing edges (in the construction of G̃∗

i the outgoing edges
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are removed from the vertice i). It is straightforward to check, then, that the only difference
between F ji

n−1(G̃
∗
i ) and Fn(G̃) is the leak edge in Fn(G̃).

Since Fn(G̃) contains the leak edge and F ji
n−1(G̃

∗
i ) does not, c0 = k0idj0. Hence, the leak

parameter k0i is globally identifiable.

3

4 521

0Fn(G̃) 3

4 521

F ji
n−1(G̃

∗
i )

Figure 10: Graphs in Fn(G̃) and F ji
n−1(G̃

∗
i ), with G̃ and G̃∗

i from Figure 9.

Example 4.6. (Example 4.2 cont.) For the model in Figure 8, we can obtain Fn(G̃) and F ji
n−1(G̃

∗
i )

(shown in Figure 10). Using these graphs, we can see

c0 =
∑

F∈F5(G̃)

πF = k04k21k23k42k45

and
d10 =

∑
F∈F14

4 (G̃∗
4)

πF = k21k23k42k45

As we expected, c0 = k04d10 so k04 is globally identifiable.

In order to improve this result, we make a few conjectures.

Conjecture 4.7. Assume n ≥ 3. For an n-compartment model where every compartment has
a directed path to i with In = {j} and Out = Leak = {i}, the leak parameter, k0i, is globally
identifiable.

This conjecture changes the condition in Proposition 4.5 of a ”strongly connected model” to a
looser condition: that every compartment has a directed path to i (the output compartment). We
can prove this in the case of certain directed path models, models where there is a directed (not
bi-directed) path from input to output.

Proposition 4.8. Assume n ≥ 3. For an n-compartment directed path model with In = {j} and
Out = Leak = {n}, the leak parameter, k0n, is globally identifiable.

Proof. Similar to the proof of Proposition 4.5, we want to show that c0 = k0ndj0, where c0 is the
last coefficient on the left hand side of the input output equation (3) and dj0 is the last coefficient
on the right hand side of (3).

We have that c0 is the sum of products of the edges of F ∈ Fn(G̃), and |Fn(G̃)| = 1 for similar
reasoning as in the proof of Proposition 4.5. Because F is a spanning incoming forest of G̃ and
because of the structure of a directed path model, k0n will be the only outgoing edge of n.
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Similarly, we have that dj0 is the sum of products of the edges of F ∈ F jn
n−1(G̃

∗
n), and |F jn

n−1(G̃
∗
n)| =

1 for the same reasoning as c0. Because of the structure of G̃∗
n, where the outgoing edges of n are

removed, all of the edges except k0n in F ∈ F jn
n−1(G̃

∗
n) will be the same as F ∈ Fn(G̃), giving us

that c0 = k0ndj0.
Therefore, the leak parameter k0n is globally identifiable.

1 2 3 4

7 8

k21 k43k32

k04

Input Output

Figure 11: Directed path model with n = 4, In = {1}, and Out = Leak = {4}.

1 2 3 4

0

7 8

G̃

1 2 3 4

0

7 8

G̃∗
4

Figure 12: Graphs obtained from the model in Figure 11.

Example 4.9. The model in Figure 11 is a directed path model because there is a directed path
from input to output, and Proposition 4.8 holds because we have that In = {j} = {1} and
Out = Leak = {n} = {4}.

From this model, we can obtain the graphs G̃ and G̃∗
4, shown in Figure 12. Since G̃ and G̃∗

4

are already the only spanning incoming forest of G̃ and G̃∗
4, we can see that product of the edges

in F4(G̃) = G̃ includes all of the same edges as F14
3 (G̃∗

4) = G̃∗
4 in addition to the leak edge, 4 → 0

labeled as k04. This gives us c0 = k04d10, so k04 is globally identifiable.

Conjecture 4.10. Assume n ≥ 3. For an n-compartment model, if a leak is introduced at the
same compartment as the output, then the identifiability degree of the non-leak parameters does not
change.

Remark 4.11. In Conjecture 4.10, the idea of introducing a leak to a model is suggested. This
idea, along with other operations and their effects on identifiability, is investigated further in [5].

Example 4.12. In Figure 13, M′ is obtained by introducing a leak to M. It is clear to see that
the identifiability degree of the non-leak parameters remains the same when the leak is introduced
to the same compartment as the output, as we expect from Conjecture 4.10.
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Figure 13: On the left, linear compartmental model M with In = Out = {1} and the identifiability
degree of the parameters labeled, with ∗ denoting an unidentifiable parameter. On the right, M′

is M with the operation of adding a leak in compartment 1 applied.

5 Parameter Identifiability

We begin by exploring the identifiability degree of parameters in cycle models containing at most
one leak, before discussing some mammillary models. Before this, though, we must define the
elementary symmetric polynomials on a finite set.

Definition 5.1. (Elementary Symmetric Polynomials) Let A = {α1, ..., αn} be a finite set of
variables. Then, for any i ∈ {1, ..., n}, the ith elementary symmetric polynomial on the elements of
A are given by

ei(A) :=
∑

1≤k1<k2<...<ki≤n

αk1 ...αki

If i > n, then we define ei(A) := 0. Also, we define e0(A) = 1 for any set A.

5.1 Cycle Models

In this subsection, we will develop a strategy for bounding identifiability degree of models and
parameters above using the coefficient map, by proving those values for cycle models with less than
two leaks. Before we begin our proofs, we make the following remark on notation:

Remark 5.2. In general, in cycle models with exactly one input, we reindex compartments to
ensure the input is in compartment 1. This has no effect, however, on the dynamics of our model.
In models with multiple inputs, we similarly reorder so that at least one of those inputs is in
compartment 1. As such, we assume that there is always an input in compartment 1 in cycle
models.

With this, we are equipped to begin proving the identifiability of some cycle models. We start with
a lemma on cycle models containing exactly one input and one output, whose output is not in the
last compartment.

Lemma 5.3. Consider the n-compartment cycle model with In = {1}, Out = {i} for some i ∈
{1, . . . , n−1}, and Leak = ∅. Let F = {k21, k32, . . . , ki,i−1} be the set of edges between compartment
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1 and compartment i and G = {ki+2,i+1, . . . , k1n} be the set of edges between compartment i+1 and
compartment 1. Then, edges in F have identifiability degree (i− 1), edges in G have identifiability
degree (n− i), and ki+1,i is globally identifiable. Moreover, the identifiability degree of the model is
(n− i)!(i− 1)!

Proof. For additional notation, we will define the set E := {k21, k32, . . . , k1n} as the set of all edges
in our model. Also, we’ll say that compartment n+1 is the same as compartment 1, for simplicity
when iterating through compartments.

It follows routinely that the (∂I −A) matrix for these models is given by:

(∂I −A) =


∂ + k21 0 0 . . . −k1n
−k21 ∂ + k32 0 . . . 0
0 −k32 ∂ + k43 . . . 0
...

. . .
. . .

. . .
...

0 0 0 . . . ∂ + k1n



With this, we use Proposition 2.1 determine that the models have the input-output equation ∏
1≤ℓ≤n

(∂ + kℓ+1,ℓ)− k21k32 . . . k1n

 yi = k21k32 . . . ki,i−1

 ∏
i+1≤ℓ≤n

(∂ + kℓ+1,ℓ)

u1

Expanding, the products in the input-output equation have coefficients on ∂ given by the elementary
symmetric polynomials on the sets E and G:

[∂n+e1(E)∂n−1+e2(E)∂n−1+· · ·+en−1(E)∂]yi = k21k32 . . . ki,i−1[∂
n−i+e1(G)∂n−i−1+· · ·+en−i(G)]u1

So, models of the desired type have a coefficient map which maps


k21
k32
...

k1n

 7→



e1(E)
e2(E)

...
en−1(E)

k21k32 . . . ki,i−1

[k21k32 . . . ki,i−1]e1(G)
...

[k21k32 . . . ki,i−1]en−i(G)



To determine parameter identifiability, we begin by considering edges in G. Note that we may
divide k21k32 . . . ki,i−1 away from each of the last n− i entries in the coefficient map to find exactly
the values of the elementary symmetric polynomials on G. So, by properties of the elementary
symmetric polynomial, we find that each edge in G has at most n − i solutions, and that the set
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has a total (n − i)! possible permutations of those values. With this, note that we have bounded
the identifiability degree of all edges in G by n− i.

Now, we will use strong induction to find the identifiability degree of ki+1,i. Let us define the set
F ′ := F ∪ {ki+1,i}, so that F ′ = E \G.

As our base case, recall that the coefficient map guarantees us the values of e1(E) and e1(G). So,
we may find exactly the value of e1(E)− e1(G) = e1(F

′).

Assume, now, that the firstm elementary symmetric polynomials on F ′ are known (for somem < i).
Then,

em+1(E) = em+1(G) + em(g)e1(F
′) + em−1(G)e2(F

′) + · · ·+ e1(G)em(F ′) + em+1(F
′)

Using this equation, by induction, every value is known except em+1(F
′), so we can solve to deter-

mine that value exactly. Hence, by induction, we find eℓ(F
′) for every degree ℓ.

In particular, now, ei(F
′) = k21k32 . . . ki,i−1ki+1,i is known. But, we already know the value of

k21k32 . . . ki,i−1 from the coefficient map. So, we divide this value away from ei(F
′) to uniquely

identify ki+1,i.

It remains to determine the identifiability of edges in F . We can use the same induction as earlier
to find each of the i− 1 nontrivial elementary symmetric polynomials on F , given the elementary
symmetric polynomials on F ′ and ki+1,i, since F and ki+1,i partition F .

With this, if each of the elementary symmetric polynomials on the i− 1 elements of F are known,
then we can bound the number of possible solutions for elements of F above by i − 1, as desired.
Then, the total number of possible permutations on those solutions is bounded above by (i− 1)!.

It remains to bound the identifiability degree of the model. The steps we used to determine the
number of solutions of F and G were independent, so we have no information available to strengthen
a bound beyond those guaranteed by our solutions for those subsets of E. In particular, then, we
bound the identifiability degree of the model above by (n− i)!(i− 1)!.

We will make a few remarks about the steps used in this proof and the strength of its result:

Remark 5.4. This result is stated as a lemma since its proof method (and result) is generalized
by Proposition 5.9. With this, we study this lemma to develop our understanding of the coefficient
maps and (∂I −A) matrices of cycle models.

Remark 5.5. At times, we’ve called the upper bounds on solutions found in this proof the identi-
fiability degree of those solutions (both for parameters and the model itself). While we conjecture
that this is exactly the identifiability degree, we have not yet found a condition which generically
guarantees a sharp lower bound on identifiability degree. In the following cases, this will remain
the case, and we confidently conjecture in each case that the upper bound given is generically the
identifiability degree, for the model and each of its edges and leaks.
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In this case, the strongest lower bound we may find is (n− i)!(i− 2)!, where the (n− i)! is from
the symmetry of edges in G and the (i− 2)! is from the symmetry of edges in F \ {k21}, since we
do not yet know the effect of sharing a compartment with an input as happens for k21.

The case where a leak is introduced to the above model follows very similarly:

Lemma 5.6. Consider the n-compartment cycle model with In = {1}, Out = {i} (1 ≤ i ≤ n− 1),
and Leak = {m} for some m ∈ {1, . . . n}. Then, identifiability degree of the model and all edges are
as in Lemma 5.3, and the identifiability degree of k0m is exactly the identifiability degree of km+1,m.

Proof. If i = m, then this case follows directly from Proposition 4.5.

For the other cases, let us maintain our definition E := {k21, k32, . . . k1n} and establish a new defi-
nition, E′ = {k21, k32, . . . , km+1,m + k0m, . . . , k1n}.

Now, we consider the case m < i. In this case, coefficients obtained from the right-hand side
of the input-output equation in Lemma 5.3 remain the same as previously. In fact, one can
verify that the only change to the coefficient map is that entries on the left-hand side now are
elementary symmetric polynomials on E′ rather than E, and with this, we gain a new entry
en(E

′)− k21k32 . . . k1n = k0mk21 . . . ˆkm+1,m . . . k1n.

So, we can find the identifiability degree of entries in G and ki+1,i using the same methods as in the
proof of Lemma 5.3. By reducing once more our elementary symmetric polynomials on E′, we obtain
the set of nontrivial elementary symmetric polynomials on {k21, k32, . . . , km+1,m + k0m, . . . , ki,i−1}
and find each of the set entries’ value, up to i− 1 solutions. Note that this process follows that of
Lemma 5.3 exactly, up to the elements of our set of i− 1 elements.

Now, we have determined the value of km+1,m + k0m up to i− 1 solutions, which is dependent on
the values taken by each of the elements in F \ {km+1,m}. But, the coefficient map still contains
the product k21k32 . . . ki,i−1. So, knowing the value of each element in F \ {km+1,m} also uniquely
determines the value of km+1,m. So, we find a unique value of km+1,m for each of the i − 1 total
values (km+1,m + k0m may take, and hence conclude that k0m may itself take i − 1 values. Since
k0m is determined by other edge values, it does not affect model identifiability degree.

Therefore, if m ≤ i, then the identifiability degree of all edges, and the model itself, are preserved
from the case with no leak. Furthermore, in these cases, the identifiability degree of k0m is exactly
the identifiability degree of km+1,m.

It remains to prove the case m > i. In this case, the product on each side of the input-output
equation now contains km+1,m + k0m in place of km+1,m.

Using the same steps as are contained in the proof of Lemma 5.3, we find the identifiability de-
gree of all edges except km+1,m to be preserved, and by substitution see that km+1,m + k0m can be
identified up to n−i solutions, which are dependent on the values taken by elements of G\{km+1,m}.

Note also that it follows from the steps of proving that number of solutions that we may use in-
duction to uniquely determine the value of k21k32 . . . ki+1,i. Also, by symmetry, we again find the

15



value of ki+2,i+1 . . . ˆkm+1,m . . . k1n up to exactly n− i solutions.

As mentioned above, the product k0mk21 . . . ˆkm+1,m . . . k1n is now given in the coefficient map of

the model. So, we find the product k21k32 . . . ˆkm+1,m . . . k1n up to n − i solutions, and hence find
k0m up to n− i solutions, each determined by the values of edges in G \ {km+1,m}.

So, since those n− i sets of distinct edge values in G \ {km+1,m} determine k0m and km+1,m + k0m,
we can find a unique value of km+1,m for each k0m, and hence conclude that identifiability degree
of km+1,m is preserved from the case with no leaks, as desired.

Therefore, the introduction of a leak to a model of the type discussed in Lemma 5.3 preserves
identifiability degree of the model and of all edges, and the leak itself has identifiability degree
equal to that of the edge leaving its compartment.

Now, we will quickly discuss the case where the output is in compartment n, before moving on to
the cases with many inputs and/or outputs.

Proposition 5.7. Consider the n-compartment cycle model with In = {1}, Out = {n}, and
Leak = ∅. In this model, the identifiability degree of k1n is n − 1, the identifiability degree of all
other edges is (n− 1)2, and the model identifiability degree is (n− 1)(n− 1)!

Proof. It is routine to determine that the coefficient map for models of this class is given by

c :


k21
k32
...

k1n

 7→


e1(E)
e2(E)

...
en−1(E)

k21k32 . . . kn,n−1


where E := {k21, . . . , k1n} is the set of all edges.

Also, let F := {k21, k32, . . . , kn,n−1} be the set of all edges except k1n. Then, F and {k1n} partition
E, so we gain the relation

ei(E) = ei(F ) + k1nei−1(F ) (4)

, for every value i (assuming e−k = 0 for any set, where −k < 0).

Note as well that en−1(F ) is given as the last entry in the coefficient map. So, we may use the
relation given in Equation 4 – with the previous entry in the coefficient map, en−1(E), to determine
k1nen−2(F ).

We can continue for smaller degrees in the same fashion, determining kk−1
1n en−k(F ) for each degree

k ∈ {1, . . . , n}. In particular, we can find kn−1
1n e0(F ) = kn−1

1n , and hence can find n− 1 solutions for
k1n.

While finding those values for k1n, we extracted each of the elementary symmetric polynomials on
F , dependent on k1n. That is, given k1n, we can find the elementary symmetric polynomials on F ,
and hence can determine the entries of F up to n− 1 solutions for each edge, with a total solution
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set size of (n− 1)!.

Since those values are dependent on the k1n value chosen, we conclude that there are (n−1)2 values
for each edge in F , and a total of (n− 1)(n− 1)! possible edge combinations for the model.

It remains to introduce a leak to this system.

Proposition 5.8. Consider the n-compartment cycle model described in Proposition 5.7. If a leak
is introduced in the nth compartment, then it is globally identifiable, and identifiability degree of
the model and its edges are preserved. If a leak is introduced in any other compartment, then
the identifiability degree of the model becomes n!, k1n has n solutions, and all other parameters
(including the leak) have identifiability degree n(n− 1).

Proof. The introduction of a leak in compartment n follows from Proposition 4.5. That identifia-
bility degree is preserved in this case is a consequence of the procedure used to prove Proposition
4.5, as well as that in the proof of 5.7.

Suppose, then, that we introduce a single leak in compartment m ∈ {1, . . . , n − 1}. Then, our
coefficient map is given by

c :


k0m
k21
...

k1n

 7→



e1(E
′)

e2(E
′)

...
en−1(E

′)

k0mk21k32 . . . ˆkm+1,m . . . k1n
k21k32 . . . kn,n−1


where E′ is the set of all edges, substituting (km+1,m + k0m) for km+1,m.

With this, let a := k21k32 . . . kn,n−1 be the last entry in the coefficient map, and b := k0mk21 . . . ˆkm+1,m . . . k1n
be the previous entry in the coefficient map. Then,

k1na+ b = en(E
′) = k1nen−1(F

′) (5)

where F ′ = E′ \ k1n.

From here, we reduce the degree of the elementary symmetric polynomial on F ′ as in the proof of
Proposition 5.7, this time determining k1n up to n solutions. Then, we use the same procedure to
find n− 1 solutions for each entry in F ′. In particular, given values for all edges except km+1,m, we
can find n(n− 1) solutions for (km+1,m + k0m).

Finally, we can use a to find n(n− 1) solutions for km+1,m. Pairing this with the values found for
(km+1,m + k0m), we find n(n − 1) solutions for all parameters except k1n and conclude that the
model has an overall identifiability degree of n(n− 1)! = n!.

The next case to observe is the general case with up to one leak, and many inputs and/or outputs.
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Proposition 5.9. Consider an n-compartment cycle model with In ∪ Out = {i1 < · · · < ik},
Leak = ∅, In = {i11 < · · · < i1j}, and Out = {i21 < · · · < i2ℓ}. Also, assume that each edge has
a distinct value. Then, edges leaving output compartments are globally identifiable. Furthermore,
edges between compartments im and im+1 have identifiability degree Dm := (im+1 − im) if there
is no output in compartment im, and Dm := (im+1 − im − 1) otherwise. Then, the model has

identifiability degree
k∏

m=1
(Dm)!

Proof. We give an outline of the proof method for this statement:

Given a set of inputs, we can consider the system formed by only considering one input at a time,
with each output – the same process used in determining the input-output equations with many
inputs and outputs. Then, recall that to prove the identifiability of the cycle model’s parameters,
we found the elementary symmetric polynomials on subsets of parameters determined by the loca-
tion of the output relative to the input.

We can repeat this process for each distinct input-output pair, finding the elementary symmetric
polynomials on every such subset of edges. In this process, we determine all edges leaving output
compartments globally.

Then, note that the set of points in the domain of the coefficient map which do not have distinct
parameters have Lebesgue measure zero, and hence excluding those points will keep any result
generically.

Using this property, we can consider the overlap in edge values between adjacent edge sets to de-
termine the values of the parameters on the paths of minimal length between input and output
locations, the length of which is (im+1 − im), if im is not an output compartment, and which is
(im+1 − im − 1) if compartment im contains and output.

With this, we have found the values (up to symmetry) of edges between compartments im and im+1,
for any m ∈ 1, . . . , k. We now use the same argument as earlier to conclude that the model’s overall

identifiability degree is the product of each smaller path identifiability degree, given by
k∏

m=1
(Dm)!

as defined in the proposition statement.

Remark 5.10. While in the single input and output case, we had to worry about the location of our
output, upon the introduction of another input or output, this problem becomes obsolete. Indeed,
if another input is introduced, then the new input compartment is not preceded by the output, and
hence the edge leaving the output compartment will behave as expected. Alternatively, in the case
with another output and a single input, the set of parameters between outputs is determined up
to symmetry, as are those preceding the new output. Also, though, the set of parameters between
the new output and the input are determined up to symmetry, so since parameters are distinct, we
can uniquely determine the value of k1n.

Corollary 5.11. In a cycle model with multiple inputs or outputs and exactly one leak, the iden-
tifiability degree of the model and its parameters are the same as in the case with no leak. In
addition, the identifiability degree of the leak is exactly the identifiability degree of the edge leaving
its compartment.
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Proof. This result follows from the procedure in the proof outline of Proposition 5.9 and the dis-
cussion of adding a leak to models with exactly one input and output. The same symmetry used
in the proof of Proposition 5.9 holds, and as discussed in the remark, we no longer are concerned
with the location of outputs relative to inputs. So, we can use the same logic as in the proof of
Lemma 5.6 to find the identifiability degree of the leak.

5.2 Mammillary Models

Definition 5.12. A linear compartmental model M is Mn(2, 2) if M = (G, In,Out, Leak), where
G is the n-compartment mammillary graph with central compartment 1, In = Out = {2}, and
Leak = ∅. The general model Mn(2, 2) is shown in Figure 14.

1

2

3

4

n

in out

k12 k21

kn1 k1n

Input Output

Figure 14: n-compartment mammillary model in
Mn(2, 2) with In = Out = {2} and without leaks

We will find and prove the identifiability degree of Mn(2, 2) models, as well as that of each of the
parameters in those models, using the coefficient map. For our result, we require the following
lemma:

Lemma 5.13. Let n ∈ N. The set A =



1
1
...
1

 ,


e1,1
e1,2
...

e1,n

 , ...,


en−1,1

en−1,2
...

en−1,n


 is linearly independent

over R[α1, ..., αn], where each αi is a distinct nonzero variable and ei,j denotes the ith elementary
symmetric polynomial on the set Aj = {α1, ..., α̂j , ..., αn} of all variables except αj.

Proof. We begin with the n = 1 case, before using induction on the dimension of A to prove other
cases. If n = 1, then A contains only the vector

(
1
)
, and therefore is linearly independent over

R[α1, . . . , αn].
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If n = 2, then A =

{(
1
1

)
,

(
α2

α1

)}
. Now, suppose that there exist b0, b1 ∈ R[α1, . . . , αn] such that

b0

(
1
1

)
+ b1

(
α2

α1

)
= 0. Then, b0 + b1α2 = b0 + b1α1, so b1(α2 − α1) = 0. Since α1 ̸= α2 (by

assumption), we require b1 = 0. So, our equations reduce to b0 = 0 and we conclude that A is
linearly independent over R[α1, . . . , αn].

Before our induction, it is important to introduce the following notation. In this proof, we will use

vj to refer to the element of A whose entries have degree j. That is, v0 =


1
1
...
1

 and in general,

vj =


ej,1
ej,2
...

ej,n

.

Now, for induction, suppose that A =



1
1
...
1

 ,


e1,1
e1,2
...

e1,n−1

 , ...,


en−2,1

en−2,2
...

en−2,n−1


 is linearly independent

over R[α1, . . . , αn−1], for some natural number n ≥ 3.

To prove the n+1 case, suppose that there exist polynomials b0, . . . , bn−1 ∈ R[α1, . . . , αn] such that
n−1∑
k=0

bkvk = 0. Then, in particular, for each j ∈ {1, . . . , n}, we obtain the equation
n−1∑
k=0

bkek,j = 0

(where e0,j = 1 for every index j).

Now, consider the system of n − 1 equations given by
n−1∑
k=0

bk(ek,ℓ − ek,n) = 0, for each ℓ ∈

{1, . . . , n − 1}. Note that for each ℓ, these equations simplify to (αn − αℓ)
n−1∑
k=1

bkek−1,{ℓ,n} = 0,

where ek,{ℓ,n} denotes the kth elementary symmetric polynomial on the set {α1, . . . , α̂ℓ, . . . , αn−1}.

Since αℓ and αn are distinct for any ℓ ∈ {1, . . . , n − 1}, we divide to obtain the set of equations
n−1∑
k=1

bkek−1,{ℓ,n}. Observe that αn does not appear in any polynomial of the form ek,{ℓ,n}. Then, any

linear dependence relation over R[α1, . . . , αn] of those polynomials may be reduced not to contain
αn (that is, may be rewritten with coefficients in R[α1, . . . , αn−1]). So, to prove linear indepen-
dence of these terms over R[α1, . . . , αn], it suffices to show linear independence over R[α1, . . . , αn−1].

But, this is exactly the set of equations generated by expanding the vectors in the nth case, up
to coefficient reindexing. So, by induction, b1 = · · · = bn−1 = 0, and by returning to the original
linear combination we conclude that b0 = 0, also.

So, for any n ∈ N, A is linearly independent over R[α1, . . . , αn] as desired.
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With this, we may find the identifiability degree of Mn(2, 2) mammillary models, as well as the
identifiability degrees of the models’ parameters. This builds on the work done in [2, Proposi-
tion 3.13].

Proposition 5.14. The identifiability degree of Mn(2, 2) is (n− 2)! Furthermore, k12 and k21 are
globally identifiable, and each other parameter has identifiability degree n− 2.

Proof. Identifiability degree of k12 and k21 follows from [2, Proposition 3.13]. The identifiability
degree of the model is also given in this theorem, but we’ll develop an alternative method to de-
termine it below as we find the identifiability degree of all parameters.

It is routine to show that the matrix (∂I −A) is given by

∂I −A =


∂ + k21 + k31 + ...+ kn1 −k12 −k13 . . . −k1n

−k21 ∂ + k12 0 . . . 0
−k31 0 ∂ + k13 . . . 0
...

...
...

. . .
...

−kn1 0 0 ... ∂ + k1n


Then, by Proposition 2.1, the entries in the coefficient map for Mn are given by the coefficients of
∂ in det(∂I −A) and det((∂I −A)22). We calculate

det(∂I −A) = −k21det


−k12 −k13 ... −k1n
0 ∂ + k13 ... 0
...

...
. . .

...
0 0 ... ∂ + k1n

− (∂ + k12)det((∂I −A)22)

= k12k21
∏

3≤i≤n

(∂ + k1i)− (∂ + k12)det((∂I −A)22)

Then, the ℓth degree coefficient of ∂ in det(∂I −A) is given by

k12k21en−2−ℓ(Ein)− [det((∂I −A)22)]ℓ−1 − k12[det((∂I −A)22)]ℓ

where Ein := {k13, k14, . . . , k1n} is the set of edges from compartment 1 into any compartment
except 2, and [det((∂I −A)22]k is the kth degree coefficient of ∂ in det((∂I −A)22).

Since k12 and k21 are globally identifiable and coefficients of det((∂I −A)22) are given in the coef-
ficient map, we conclude that we can find exactly the values of each of the elementary symmetric
polynomials on Ein. So, we can find each inward edge up to n− 2 symmetric solutions, and deter-
mine that there are (n− 2)! distinct solutions for the parameter values taken by those edges.

It remains to determine the behavior of the edges in Eout := {k31, k41, . . . , kn1}. To do so, we will
determine the coefficients of ∂ in det((∂I −A)22).
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One can determine that det((∂I −A)22) is given by

det((∂I −A)22) = (∂ + k21 + k31 + · · ·+ kn1)
∏

i∈{3,...,n}

(∂ + k1i)

− k13k31
∏

i∈{3̂,4,...,n}

(∂ + k1i)− · · · − k1nkn1
∏

i∈{3,...,n−1,n̂}

(∂ + k1i) (6)

Note that the product
∏

i∈{3,...,n}

(∂ + k1i) has exactly the elementary symmetric polynomials on Ein

as its coefficients on ∂. Recall that the values of these polynomials are known. So, since k21 is also

known, we subtract away (∂ + k21)
∏

i∈{3,...,n}

(∂ + k1i) from det((∂I − A)22) to find a set of known

coefficients in terms of only edges in Ein and Eout.

Here, our coefficients simplify to k31em(Ein \ {k13}) + · · · + kn1em(Ein \ {k1n}), for each m ∈
{0, . . . , n−1}. Since the coefficients on k31, k41, . . . , kn1 are linearly independent (by Lemma 5.13),
we have a system of n − 2 equations in n − 2 unknown values, and hence determine the values of
edges in Eout up to n− 2 solutions (dependent on the values of edges in Ein).

With this, the identifiability degree of the model is (n − 2)!, k12 and k21 are globally identifiable,
and all other edges have identifiability degree n− 2.

Similar methods to those above are promising in the proofs of identifiability degree of other model
classes. While this marks the end of the models considered in this paper, other mammillary, cycle,
and other models have promising coefficient maps, waiting to be broken down to determine the
identifiability of those models.

6 Identifiability Degree of Tree Models

In this section we will look at tree models and their identifiability degree, as discussed in [3].

Definition 6.1. (Tree Model) A tree model, Mt, is a system such that, given any compartment,
the rest of the system may be subdivided into subsystems, Si, in which every subsystem is con-
nected to the experimental compartment (the compartment containing both the input and output)
bidirectionally and there are no connections between compartments of different subsystems.

Example 6.2. The following is a tree model with 1∗ denoting the experimental compartment.
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The graph is separated into the subsystems S2, S3, and S4 off of compartment 1.

Conjecture 6.3. For a tree model Mt the identifiability degree D is given by

D = (n− 1)!

N∏
i=2

qi!

ni!

where n is the total number of compartments, ni is the number of compartments in a subsystem Si,
N is the number of subsystems, and qi is the number of bidirected edges with symmetry (edges that
can be switched without changing the system) within a subsystem Si.
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1 346
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4 57
8

k41

k14

k31

k13

k46

k64

k74k47

k12k21

k53

k35
k03

Input
Output

Figure 15: Tree model with S2 = {4, 6, 7}, S3 = {2}, S4 = {3, 5}, and 1 set of symmetric edges,
{k46, k64, k47, k74}.
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Example 6.4. Using the model in Figure 15, the number of different parametrization vectors
(identifiability degree) is predicted in [3] to be

(n− 1)!

n2!n3!n4!
2! =

6!

1!2!3!
2! = 120

1

2

3

7

8

4

k21
k12

k32

k23

k41
k14

Input

Output

Figure 16: Tree model with experimental compartment 2 and S2 = {1, 3, 4} and the set of symmetric
edges {k23, k32, k14, k41}.

Example 6.5. Using the model in Figure 16, the number of different parametrization vectors
(identifiability degree) is predicted to be

(n− 1)!
2∏

i=2

qi!

ni!
= 3!

2!

3!
= 2

which we can check is true using the coefficient map.

24



Acknowledgements

This work is carried out at the Texas A&M Mathematics REU 2025 under the thematic program
Algebraic Methods in Computational Biology funded by the NSF REU site grant DMS-2150094.

A special thanks to Dr. Anne Shiu and Zeytoon Kazemimoghaddam for their mentorship through-
out the research and writing of this paper.

Additional Resources

Code was written to generate and determine properties of linear compartmental models given
graph structure and input/output/leak locations. This is available at https://github.com/

tylerhuneke/linear-compartmental-models
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