Research Interests
Nature has demonstrated the extraordinary ability in biological systems to form large and intricate supramolecular arrays from small and simple building blocks, giving rise to a wide variety of structures and functions. Coordination-driven self-assembly has received considerable attention and produced numerous examples of chemically interesting and aesthetically appealing self-assembled structures. For example, nanoscopic molecular cages, can act as molecular hosts for a variety of potential applications, namely molecular recognition, drug delivery, and chemical sensing. They can also be applied as molecular reactors for highly selective reactions (Ex. size- or enantio-selective catalysis and bond activation in a confined space), basic building units for the construction of extended porous materials, and artificial enzymes.
Porous solid materials have captured the imagination of materials scientists and offer great promise in gas storage, separations, catalysis, and drug delivery applications. In the last decade, the study of Metal-Organic Frameworks (MOFs), Porous Polymer Networks (PPNs), and Porous Coordination Cages (PCCs) have become some of the most rapidly developing fields in materials chemistry. These materials represent several different classes of permanently porous materials, due to their ability to maintain a rigid framework surrounding void spaces upon guest removal. Porous materials have a number of applications, from gas storage and separation, to drug delivery and catalysis. These applications take advantage of the physisorptive properties of these materials to sequester and concentrate substrates within their pores. The highly tunable pore environments of MOFs, PPNs, and PCCs allows for the fine control of these capture properties, allowing for the densification of gaseous substrates compared to bulk storage, or for the localized concentration of substrates near a catalytically active site. The development of these tailored materials utilizes aspects of organic synthesis, analytical chemistry, and materials science and engineering leading to a truly multidisciplinary field.
Educational Background
- Ph.D., 2000, Texas A&M University
- Postdoctoral Fellow, 2000-2002, Harvard University
Awards & Honors
Highly Cited Researchers by Thomson Reuters (2014, 2015, 2016, 2017, 2018)
The Association of Former Students Distinguished Research Achievement Award, Texas A&M University (2017)
Elected Fellow, American Association for the Advancement of Science (2016)
Elected Fellow, Royal Society of Chemistry (2016)
Elected Fellow, American Chemical Society (2016)
DOE Hydrogen Program Special Recognition Award as part of the Hydrogen Sorption Center of Excellence (2010)
Air Products Faculty Excellence Award (2007)
Miami University Distinguished Scholar Award (2006
NSF CAREER Award (2005-2009)
Cottrell Scholar Award (2005)
Selected Publications
"Rapid Desolvation-Triggered Domino Lattice Rearrangement in a Metal-Organic Framework", Lo, S.-H., Feng, L.; Tan, K.; Huang, Z.; Yuan, S.; Wang, K.; Li, B.-H.; Liu, W.-L.; Day, G.; Tao, S.; Yang, C.-C.; Luo, T.-T.; Lin, C.-H.; Wang, S.-L.; Billinge, S.; Lu, K.-L.; Chabal, Y.-J.; Zou, X.; Zhou, H.-C., Nat. Chem. 2020, 12, 90–97.
- “Integrating Photoactive Ligands into Crystalline Ultrathin 2D Metal–Organic Framework Nanosheets for Efficient Photoinduced Energy Transfer”, Lin, H.; Yang, Y.; Diamond, B. G.; Yan, T.-H.; Bakhmutov, V. I.; Festus, K. W.; Cai, P.; Xiao, Z.; Leng, M.; Afolabi, I.; Day, G. S.; Fang, L.; Hendon, C. H.; Zhou, H.-C., Journal of the American Chemical Society, 2024, 146(2), 1491–1500. DOI:10.1021/jacs.3c10917
- “Investigating the Cell Entry Mechanism, Disassembly, and Toxicity of the Nanocage PCC-1: Insights into Its Potential as a Drug Delivery Vehicle”, Xiao, Z.; Lin, H.; Drake, H. F.; Diaz, J.; Zhou, H.-C.; Pellois, J.-P., Journal of the American Chemical Society, 2023, 145(50), 27690-27701. DOI:10.1021/jacs.3c09918
- “Linker Scissoring Strategy Enables Precise Shaping of Metal–Organic Frameworks for Chromatographic Separation”, Xu, M.; Cai, P.; Meng, S.-S.; Yang, Y.; Zheng, D.-S.; Zhang, Q.-H.; Gu, L.; Zhou, H.-C., Gu, Z.-Y., Angew. Chem. Int. Ed., 2022, Early Edition, e202207786. DOI:10.1002/anie.202207786
- “Morphology Transcription in Hierarchical MOF-on-MOF Architectures”, Wang, K.-Y.; Feng, L.; Yan, T.-H.; Qin, J.-S.; Li, C.-X.; Zhou, H.-C., ACS Materials Lett., 2021, 3 (6), 738-743. DOI:10.1021/acsmaterialslett.1c00070